CompPair 是世界一流的复合材料专家,提供第一种可修复和可持续的复合材料,这是自修复复合材料领域的一项突破性创新。采用 CompPair 的技术 HealTech TM 制成的复合材料结构可以在 1 分钟内现场修复损坏。CompPair 为制造商提供与标准生产流程兼容的尖端材料。HealTech TM 的价值主张是将维修时间缩短 99%,并显著降低二氧化碳排放量。CompPair 解决了复合材料的限制问题,并引领了行业的范式变革。
私有 Rajant 网状网络提供其他宽带和网状网络产品无法比拟的移动性、性能、可靠性、安全性、可扩展性和灵活性。我们的自修复点对点网络通过互连的 BreadCrumb® 无线节点网络和我们获得专利的¹ InstaMesh 网络软件提供连接。所有网络节点和客户端都可以随时在网络内的任何位置移动。由于每个 BreadCrumb 都可以有多个连接,因此始终存在一条可行的路径来传递您的信息。事实上,您添加的节点越多,您建立的通信路径就越多,您的网络就越有弹性。
建筑行业正在逐步采用先进的建筑技术和材料来提高效率、可持续性和项目成果。目前的做法包括使用建筑信息模型 (BIM)、预制组件和创新材料,如自修复混凝土和气凝胶。例如,BIM 可以实现更好的项目可视化和利益相关者之间的协调,从而减少错误和返工。另一方面,预制允许在受控环境中异地制造组件,从而加快现场组装速度并减少浪费。这些技术正在融入施工过程的各个阶段,从设计和规划到执行和维护,展示了它们的多功能性和有效性。
微生物腐蚀 (MIC) 是各个行业面临的严峻挑战,包括石油和天然气工业、海洋基础设施和水处理厂,因为微生物活动会显著加速金属降解。 MIC 是由细菌、古细菌和真菌在金属上形成生物膜引起的,它们会引发局部电化学反应,从而导致腐蚀。本文重点关注硫酸盐还原菌(SRB)、铁氧化细菌(IOB)、产甲烷菌等关键微生物,以及支持微生物生长和加速腐蚀的环境因素,包括氧气、营养物、pH值、温度和盐度。此外,还评估了各种 MIC 检测方法,例如微生物分析、电化学阻抗谱 (EIS)、无损检测和实时传感器。缓解策略包括耐腐蚀材料、抗菌涂层、杀菌剂和阴极保护,重点关注提供可持续解决方案的新兴技术,例如智能(自修复)涂层、纳米材料和生物电化学系统。对于更具成本效益和效率的智能涂层的开发、纳米材料的长期环境影响以及生物电化学系统在各种条件下的有效性的优化,还必须进行进一步的研究。通过整合检测和缓解方法,工业界可以保护关键基础设施免受微生物腐蚀的长期影响,并显著降低微生物腐蚀损害的成本。关键词:硫酸盐还原菌(SRB);生物科学;微生物腐蚀(MIC);减轻腐蚀;电化学阻抗谱 (EIS) 摘要 微生物影响腐蚀 (MIC) 对石油和天然气行业、海洋基础设施和水处理设施等各个行业构成了重大挑战,因为微生物活动会显著加速金属降解。 MIC 是由细菌、古细菌和真菌引起的,它们在金属表面形成生物膜,引发局部电化学反应,从而导致腐蚀。本文重点关注硫酸盐还原菌(SRB)、铁氧化细菌(IOB)、产甲烷菌等关键微生物,以及支持微生物生长和加剧腐蚀的环境因素,包括氧气、营养物、pH值、温度和盐度。此外,还评估了各种 MIC 检测方法,包括微生物分析、电化学阻抗谱 (EIS)、无损检测和实时传感器。缓解策略包括耐腐蚀材料、抗菌涂层、杀菌剂和阴极保护,重点关注自修复涂层、纳米材料和生物电化学系统等提供可持续解决方案的新兴技术。进一步的研究对于开发更具成本效益和效率的自修复涂层、了解纳米材料的长期环境影响以及优化生物电化学系统以在不同条件下发挥作用至关重要。通过整合检测和缓解方法,行业可以保护关键基础设施免受 MIC 的长期影响,并显著降低与 MIC 相关故障相关的成本。
Salgenx 的电网规模盐水电池储能是一种钠液流电池,它不仅可以储存和释放电能,还可以在充电的同时进行生产,包括海水淡化、石墨烯和使用风力涡轮机、光伏太阳能电池板或电网电力进行热储存。使用人工智能和超级计算机来制定、评估、验证和预测自组装和自修复液流电池电极。将热量储存在盐水中并在需要时使用。使用模块化集装箱设计的商业规模、家庭、海洋、远程和电网规模的储能。高峰需求定价和非高峰定价之间的电网费率套利。
摘要:本期观点旨在介绍聚合物科学在电池技术领域的现状和未来机遇。聚合物在提高无处不在的锂离子电池的性能方面发挥着至关重要的作用。但它们对于可持续和多功能后锂电池技术(尤其是固态电池)的发展将发挥更为重要的作用。在本文中,我们确定了用于电池应用的聚合物的设计和开发趋势,包括电极粘合剂、多孔隔膜、固体电解质或氧化还原活性电极材料。我们将使用一系列最新的聚合物发展来说明这些趋势,包括新型离子聚合物、生物基聚合物、自修复聚合物、混合离子电子导电聚合物、无机聚合物复合材料或氧化还原聚合物等。最后,我们将重点介绍该领域未来的需求、机遇和方向。
网络 网络是将 ALCF 的所有计算系统连接在一起的结构。InfiniBand 支持系统 I/O 节点和 ALCF 的各种存储系统之间的通信。生产 HPC SAN 建立在 NVIDIA Mellanox 高数据速率 (HDR) InfiniBand 硬件之上。两台 800 端口核心交换机在 80 台边缘交换机之间提供主干链路,在无阻塞胖树拓扑中产生总共 1600 个可用主机端口,每个端口的速率为 200 Gbps。此结构的完整二分带宽为 320 Tbps。HPC SAN 由 NVIDIA Mellanox 统一结构管理器 (UFM) 维护,提供自适应路由以避免拥塞,以及 NVIDIA Mellanox 智能数据中心自修复互连增强 (SHIELD) 弹性系统,用于链路故障检测和恢复。
• 美国国家工程院院士 (2020–) • Maybelle Leland Swanlund 捐赠讲席教授 (2019–) • 贝克曼研究所精神与愿景奖 (2019) • 工程科学学会工程科学奖章 (2018) • 最佳石油和天然气研究项目奖,IChemE 全球奖 (2016) • 实验力学学会 Hetényi 奖 (2016) • 工程学院 Drucker 杰出教师奖 (2014) • 实验力学学会研究员 (2012) • Frocht 奖 — 年度实验力学教育家,实验力学学会 (2011) • Lazan 奖 — 因在实验力学方面的杰出技术贡献,实验力学学会 (2011) • 最佳论文奖,实验力学学会、生物系统和材料技术分部 (2010) • NASA 认可证书 —自修复内胆材料 (2009) • S CIENTIFIC A MERICAN 50 (2007) - 表彰其在自修复材料的技术进步 • 特拉华大学机械系 工程杰出校友 (2007) • 工程科学学会会员 (2007) • Donald Biggar Willett 工程学教授 (2005–2019) • 实验力学学会 Hetényi 奖 (2004) • 伊利诺伊大学香槟分校大学学者 (2002) • 特拉华大学杰出成就校长奖 (2002) • 美国复合材料学会最佳论文奖 (2002, 2003) • 大学。伊利诺伊杰出工程顾问奖(2002、1999、1998、1992) • 科技博物馆创新奖入围者 - 造福人类的技术(2001) • Robert E. Miller 教学卓越奖(1999) • 伊利诺伊大学本科生研究卓越奖(1999) • 海军研究办公室青年研究员奖(1992) • 先进材料与工艺工程国际研究生奖(1989) • 海军研究办公室研究生研究员(1986-89) • Tau Beta Pi 百年研究生研究员(1986-87) • Tau Beta Pi、Pi Tau Sigma、Phi Kappa Phi 荣誉协会
摘要 在尖端化学技术的推动下,建筑材料的创造、使用和可持续性目前正经历着土木工程领域的革命性时期。由于这些化学进步,用于各种土木工程应用的材料的性能、耐久性和环境影响正在得到改善。本综述研究了化学新材料在解决建筑行业面临的无数问题中所发挥的关键作用。本研究分析了正在改变建筑格局的化学先进材料的重要实例,例如土聚物混凝土、自修复材料和纳米工程解决方案。这些材料的使用支持了行业的可持续发展目标,同时也提供了结构的完整性和长寿命。本综述还探讨了化学创新材料领域的最新发展及其困难和前景。本研究通过深入了解这些材料的变革潜力,有助于促进可持续和有弹性的建筑环境。