研发技术集成电路设计:• 带有 PMU 和 EHU 的 MCU 的开发• 机器学习在 IC 布局中的应用• 印刷、可重构、自修复、无电池、柔性、纸基、生物、生物相容性、液体、瞬态、可食用和表皮电子产品的开发• 关键技术的开发• 为更多摩尔应用开发逻辑核心设备、DRAM、Flash 和 NVM 技术• 新兴存储设备的开发,包括 FeRAM、MRAM、CBRAM、OxRAM、聚合物存储器和基于 DNA 的海量存储设备• 新型逻辑设备的开发,包括 SpinFET、Neg-C FET、Mott FET、NEMS 和拓扑绝缘体• 为超越摩尔 (MtM) 应用开发超越 CMOS 设备,包括 PUF 和 RNG• 新型架构的开发,包括 GAA 设备、3D 堆叠以及 CMOS 与超越 CMOS 的共集成
Abdul Shakoor 博士拥有材料工程博士学位。他的研究领域专注于合成和表征先进材料,用于多种应用。他的研究小组正在积极研究开发锂/钠离子电池的新型阴极/阳极材料、多功能智能自修复涂层、Ni-P/Ni-B 基纳米复合涂层和铝金属基纳米复合材料。他在著名的高影响力 SCI 索引期刊上发表了 160 多篇研究论文、05 个书籍章节和 03 项专利。他在国际/国家科学论坛(会议/研讨会)上也发挥了重要作用。他与行业/国际研究伙伴有着积极的合作。他正在与当地行业(QSRTC、QCOAT)和国际公司(C2C New Cap、葡萄牙)合作,领导许多国际/国家研究资助项目。他还连续被评为 2019-2021 年研究领域最具影响力的科学家(前 2%)。
收稿日期:2015 年 9 月 14 日 / 接受日期:2015 年 10 月 10 日 / 发表日期:2015 年 11 月 4 日 防腐涂层广泛应用于运输机构使用的维护和车辆,它通过在金属和外界环境之间提供屏障来保护基材,尤其是在含有氯化物的环境中。为了提供足够的防腐保护,涂层必须均匀、附着力好、无孔隙、并具有自修复能力,以应对可能发生物理损坏的应用。本综述的目的是检查用于保护维护设备和车辆中常用的各种金属/合金的防腐涂层的状态,并确定可能有助于保护设备资产的经济有效的高性能腐蚀抑制剂。重点关注在环境温度和压力以及接近中性 pH(6-8)的条件下氯化物引起或加剧的金属腐蚀。关键词:防腐涂层,金属,氯化物,维护设备,评论 1. 引言
摘要 — 无需人类决策(或干预)即可进行现场自我修复的自工程系统可用于实现零维护。这种理念与人体在某种程度上自我修复和自我修复的方式是同义词。本文综合了与新兴的自修复技术领域相关的问题,该领域将软件和硬件缓解策略联系起来。努力集中在内置检测、屏蔽和主动缓解上,包括自我恢复或自我修复能力,并侧重于系统弹性和从故障事件中恢复。对设计技术进行了严格审查,以阐明故障覆盖、资源分配和故障意识的作用,这些作用是在现有和新兴的可打印/纳米级制造工艺的背景下设定的。该分析为形成成功整合零维护所需的研究观点提供了新的机会。最后,列举了潜在的成本效益和未来趋势。
功能性合成材料与生物实体的整合已成为一种新的、强大的方法,可用于创建具有前所未有的性能和功能的自适应功能性结构。这种混合结构也称为工程化生物材料 (ELM)。ELM 有可能实现许多人们非常需要的特性,这些特性通常只存在于生物系统中,例如自供电、自修复、响应生物信号和自我维持的能力。受此推动,近年来,研究人员开始探索 ELM 在许多领域的应用,其中,传感和驱动是进展最快的领域。在这篇简短的评论中,我们简要回顾了基于 ELM 的传感器和执行器的重要最新发展,重点介绍了它们的材料和结构设计、新制造技术以及生物相关应用。我们还确定了该领域的当前挑战和未来方向,以帮助这一新兴跨学科领域的未来发展。
摘要 与通过强配位或共价键组装的金属有机骨架(MOF)和共价有机骨架(COF)不同,基于非共价相互作用的新型多孔有机分子材料由于其结构单元简单、超分子组装的灵活性而备受关注。非共价π-堆叠有机骨架(πOF)是多孔材料的一个子类,由有机构件通过π-π相互作用自组装形成的晶体网络组成。π-π相互作用和π-离域超分子骨架的柔性、可逆和导电特性赋予πOF有利的属性,包括溶液可加工性、自修复能力、显著的载流子迁移率和优异的稳定性。这些特性使πOF成为气体分离、分子结构测定和电催化等应用的理想选择。自2020年该概念提出以来,πOF的化学和应用都取得了重大进展。未来的研究应侧重于扩大其结构多样性和探索新的应用,特别是在传统多孔材料遇到局限性的领域。[1, 2]。
许多最近开发的无线皮肤界面生物电子设备都依赖于传统的热固性有机硅弹性体材料,例如聚二甲基硅氧烷 (PDMS),作为电子元件、射频天线和常见的可充电电池的软封装结构。在优化的布局和设备设计中,这些材料具有吸引人的特性,最突出的是它们即使在曲率高和自然变形较大的区域也能与皮肤形成温和、无创的界面。然而,过去的研究忽视了开发这些材料变体以进行多模式操作的机会,以增强设备对从机械损坏到热失控等故障模式的安全性。这项研究提出了一种自修复 PDMS 动态共价基质,其中嵌入了化学物质,可提供热致变色、机械致变色、应变自适应硬化和隔热,作为与安全相关的属性集合。该材料系统和相关封装策略的演示涉及一种无线皮肤界面设备,该设备可捕获健康状况的机械声学特征。这里介绍的概念可以立即应用于许多其他相关的生物电子设备。
石墨烯材料对粒子辐射具有很强的抵抗力,这在带电粒子束实验中得到了证实 [4-6]。这一特性主要归因于石墨烯中缺乏块状晶体结构:这降低了粒子与样品碰撞的概率,并且在发生这种碰撞时不可能形成大量的原子位移级联,从而最大限度地减少了材料损坏的程度 [7]。此外,已经证明石墨烯对某些能量范围内的轻带电粒子束几乎是“透明的” [8, 9],这甚至可以在石墨烯的基础上开发用于在强力加速器中输出高能质子束的窗口 [10]。石墨烯对辐射具有高抵抗力的第二个原因是块状材料中不存在的辐射缺陷的“自修复”效应 [4]。在石墨烯中,它们首先通过热激活过程实现,即置换原子的重新排序,以及通过空位和纳米孔捕获吸附原子[11, 12]。
本论文进行了文献综述,以评估有关纳米金刚石 (ND) 及其应用的当前知识状态,包括它们在刺激响应材料中的应用。进行理论审查后发现,虽然 ND 因其出色的性能而受到重视,但对其在可持续和智能材料中的应用研究仍然有限。这表明可能存在知识差距,科学界对该主题的研究可能还不够,以至于在理论测试条件之外的现实应用中广为人知或使用。这表明该主题在当前时间和地点值得研究。案例研究展示了 ND 在水净化、有机太阳能电池和自修复材料等应用中的变革潜力。这些案例研究强调了纳米金刚石增强耐用性、效率和环保性的能力。Carbodeon Ltd Oy 的采访见解提供了关于知识差距、未来前景和 ND 商业化的实用观点。研究结果强调需要进一步研究和合作,以充分发挥 ND 作为材料科学创新和可持续解决方案基石的潜力。
成分复杂的材料在极端环境下表现出了非凡的结构稳定性。其中,最常想到的是高熵合金,其化学复杂性赋予了硬度、延展性和热弹性的不寻常组合。与这些金属-金属键合系统相比,离子键和共价键的加入导致了高熵陶瓷的发现。这些材料还具有出色的结构、热和化学稳定性,但功能特性种类繁多,能够实现连续可控的磁、电子和光学现象。从这个角度来看,我们概述了高熵陶瓷在极端环境下功能应用的潜力,其中内在稳定性可能为固有硬化设备设计提供一条新途径。在辐射、高温和耐腐蚀领域,回顾了当前关于高熵碳化物、含锕系元素陶瓷和高熵氧化物的研究,其中局部无序的作用被证明可以创造自修复和结构坚固的途径。在此背景下,概述了创造未来在恶劣环境下运行的电子、磁性和光学设备的新策略。