.2KT = MC 2 / LN 2 D 5.6 10 7 Hz; M D M C C 2M O D 44 M P D 7:3 10 26千克; M P D质子质量。21。g th v d 1; V D 0:7; G t d 1:43; g th d exp - th 2l]; ˛th d ln .g th /= 2l d 0:18 m 1。.n 2 n 1 / th d th = 21 D 1:8 10 20 m 3。r th d .n 2 n 1 / th = rel d 4:5 10 19 m 3 s 1; p d ra 1 a 2 lh; R D P = A 1 A 2 LH / D 3 10 25 m 3 S 1; r 10 6 r;泵速度大约是阈值泵速度的10个6倍。(b)由于在自发发射方面的上激光水平的寿命极长,因此一旦人口差超过.n 2 n 1 / th,振荡就会累积。更强的抽水会导致激光辐射的产生。通过CO 2分子相互碰撞,维持激发态的不同旋转水平的种群的验分布,并将泵的能量转换为激光辐射(以及松弛的能量)。(c)为简单起见,我们将CO 2气体视为理想气体。在273 K和正常压力下,理想气体(摩尔体积22.4 L)包含6 10 23分子。这对应于大约3 10 25 m 3。我们在室温和正常压力(1 bar)下将此数字用于CO 2。在10 mbar的压力下,可用CO 2分子的密度为3 10 22 m 3。在室温下,激发的CO 2分子在不同的旋转状态。约有1%的分子处于特定的旋转状态。因此,大约3 10 21个分子每m 3可用于激光跃迁。假设一半的分子处于激发态,我们发现振动旋转状态的分子密度为1.5 10 21 m 3。这将导致˛8th 1:4 m 1,并且单个路径增益为g 1 d exp.˛l/ d 4。(d)对于碰撞线,增益横截面为21 d C 2 A 21 = .8 2 / g。越来越大的压力 /宽度为21 = .8 2/2 = c / d。遵循的是,0 /与大约10 mbar的压力无关。在这种压力下,2 C D,我们计算的增益系数是茶和高压CO 2激光器的最大增益系数。
wlvos@utwente.nl 简历 Willem Vos 于 1991 年凭借其论文“高压下简单系统的相行为”以最高荣誉 (cum laude) 获得阿姆斯特丹大学物理学博士学位。他曾获得美国卡内基科学研究所地球物理实验室的著名卡内基奖学金,在那里他发现了一类在极高压下的新型范德华化合物 (1992 年《自然》论文)。随后,他转而研究光子晶体和胶体物理。他的团队首创了非常受欢迎的“反蛋白石”光子晶体 (1998 年《科学》论文 [>2100x 引用])。自 2002 年起,Vos 担任特温特大学 MESA+ 纳米技术研究所复杂光子系统 (COPS) 教授。他的团队首次展示了使用 3D 光子晶体以及随后的 3D 光子带隙控制光的自发发射。 2005 年,他获得了荷兰科学基金会 NWO 的个人 VICI 资助。Vos 是 APS 和 OSA 的研究员,曾获得法国科学院斯内利厄斯奖章和笛卡尔-惠更斯奖。Vos 的论文平均被引用 45 次以上。他的学生已成为领先机构的教职员工,或在主要行业和非营利组织中谋求职业。摘要 - 应用纳米光子学?纳米光子学应用!纳米光子学领域已经产生了各种各样令人震惊的新科学概念和新应用。由于阿贝衍射极限,透镜和显微镜等传统光学元件无法将光聚焦到深亚波长纳米尺度。但是,人们可以通过使用纳米材料(如超材料、等离子体系统和光子晶体等)仔细操纵近场衰减波,将光压缩到纳米尺度。得益于光电子学和微电子学(我们的东京同事在 3D 带隙晶体中实现微型无阈值激光器方面取得了重大进展)、太阳能电池、光谱学和显微镜学,纳米光子学正在从生物化学到电气工程和数据通信等领域得到应用。在特温特大学的应用纳米光子学 (ANP) 集群中,一个由 80 名研究人员组成的团队研究了各种主题,例如用于存储光的光子晶体、量子保护网络安全、用于芯片行业的高级镜子、复杂介质和可编程片上网络中的量子光处理,以及用于集成光子学的极其精确的微型激光器。ANP 集群是荷兰最大的纳米光子学科学家聚集地。ANP 开创了新的研究领域“波前整形”,将光聚焦在不透明介质内部或外部,并设法透过不透明屏幕!ANP 在光传播的基本原理方面提供了新的见解,并探索了新兴应用(“纳米光子学应用!”),本着特温特大学创业精神。与工业界一起,知识的发展尤其体现在自由形式光散射、光伏、用于量子信息的光子集成电路以及用于水质监测等传感方面。在简要介绍 ANP 之后,我将报告一些最近的研究亮点,包括我们与 Iwamoto 教授和 Arakawa 教授团队的持续合作。
纳米技术的近期爆炸性生长受到快速发展的纳米技术的点燃,这表明光表现出非凡的光 - 与亚波长度尺度结构的物质相互作用。这种异国情调的行为不仅表现出寻找前所未有的光学的重要性,而且还暗示了在可见范围内实现现实世界应用的可能性。的确,纳米光子学的最新进展表明,基于纳米光子的设备和应用可能是以紧凑的方式替换常规笨重的光学组件的有力候选者。国际超材料,光子晶体和血浆(META)是纳米光子学研究的年度会议。它尤其涵盖了超材料,光子晶体,血浆和纳米光子设备和应用的各种研究。最新的会议是Meta'21,是由于1921年7月20日至23日大流行而在网上举行的,纳米光子学,超材料和相关主题的最新发展在世界范围内。此特刊“纳米光学的最新趋势”介绍了会议中的邀请和精选研究和审查文章的集合。等离子体学是纳米光子学的主要分支,处理表面等离子体,即金属 - 介电接口处电子的集体振荡。Kim等。 [1]在超短时尺度(〜飞秒或更少),所谓的超快等离子体学评论等离震源。 Menabde等。 Xu等。 等离子间的两个主要特征是严格的场限制和现场增强。Kim等。[1]在超短时尺度(〜飞秒或更少),所谓的超快等离子体学评论等离震源。Menabde等。 Xu等。 等离子间的两个主要特征是严格的场限制和现场增强。Menabde等。Xu等。 等离子间的两个主要特征是严格的场限制和现场增强。Xu等。等离子间的两个主要特征是严格的场限制和现场增强。在两个选定的示例中,对超快等离子体学的基本原理和最新成就进行了广泛的综述:强结构物理学和超压缩光谱。[2]对图像极化子进行了全面的综述,这是一种新型的极化模式,当材料靠近高度导电材料(以范德华的晶体形成)时,它与镜像结合。作者描述了图像极化子和各种范德华晶体的分散体,包括双曲线和非局部特征以及实验突破。[3]提出了一种平衡 - 热动力计算方法,以推广先前报道的理论以计算浆质电位。为了提高应用范围和先前模型的准确性,作者引入了一种等效的波长方法来估计吸收横截面并结合了等离激元的局部加热。广义方法可以量化非MIE谐振等离子系统中的等离子电势,而常规方法仅适用于MIE谐振系统。前者实现隐藏的光 - 物质相互作用[4]。Sakai等。 证明,由金四聚体组成的等离激元纳米结构可以在纳米级区域内用四极性弹药挤压结构光。 这种结构化的光紧密结合在等离激元纳米结构中,使作者能够访问由于长度尺度不匹配而禁止的多极转变。 Baghramyan和Ciracì[5]使用量子流体动力学理论评估发射极的荧光增强,并与矛盾Sakai等。证明,由金四聚体组成的等离激元纳米结构可以在纳米级区域内用四极性弹药挤压结构光。这种结构化的光紧密结合在等离激元纳米结构中,使作者能够访问由于长度尺度不匹配而禁止的多极转变。Baghramyan和Ciracì[5]使用量子流体动力学理论评估发射极的荧光增强,并与同时,已知后者,即等离子纳米结构附近的领域增强,可以加速附近发射器的自发发射,但同时表现出淬灭作用。