量子反应是由于系统与其环境之间无法控制的纠缠而产生的。然而,经常通过更简单的情况来考虑和建模,在这种情况下,环境的作用是在系统的自由度中引入经典噪声。在这里,我们确定了经典噪声模型需要满足的必要条件,以定量地对变质进行定量建模。特别是,对于纯dephasing过程,我们确定了噪声确定的稳定统计属性,这些噪声由量子量算子的量子多点时间相关函数确定,而环境运算符将进入系统托架交互。尤其是,对于洛伦兹(Lorentz Drude)的光谱密度的示例性自旋玻色子问题,我们表明高温量子反应性被彩色高斯噪声数量地模仿。反过来,对于耗散环境,我们表明,经典噪声模型无法描述由于光子/声子的自发发射而放松引起的破坏效应。这些发展提供了一个严格的平台,以评估经典的破坏性噪声模型的有效性。
摘要:纤维耦合的微型风险是一个有前途的平台,用于增强钻石色中心的自发发射。微电池的测得的腔体增强发射受每个腔模式的有效体积(V),腔质量因子(Q)以及微波和纤维之间的耦合。在这里,我们观察到室温光致发光,从氮气离子中心的集合到高Q / V微视孔模式,当与微电风模式的相干光谱合并时,它们可以阐明这些因素的相对贡献。广泛的发射光谱充当内部光源促进模式的识别,对几个无腔谱范围。分析收集的微型锥形的纤维锥度揭示了通过腔和纤维锥度的光谱滤波,后者我们优先找到了与高阶微波模式的伴侣。相干模式光谱用于测量Q〜1×10 5 - 在可见波长下运行的钻石微腔的报告值最高。随着微型尺寸的现实优化,我们预测purcell因子约为50个。
摘要:光学增益的准确测量对于筛选材料作为薄膜激光应用的可行活动介质至关重要。通常使用可变条纹长度(VSL)方法测量净模态增益,该方法在过去几十年中已经进行了广泛的研究。在这项工作中,我们提出了一种替代方法,我们将其命名为散射发射概况(SEP)方法,以测量净模态增益。它依赖于从泵条带照亮的膜表面散布的放大自发发射(ASE)的收集。通过使用适当的设置,新方法可以更快地测量净模态增益,同时提供更准确的增益值。在本文中详细介绍了提取净模态增益的设置和算法,并在铅卤化物钙钛矿膜上进行了证明。显示了条纹长度对测量增益值的影响。通过两种不同的钙钛矿膜进行的增益测量,通过自旋涂层或热蒸发制造,确认了SEP方法的广泛适用性。最后,我们显示了SEP方法与VSL测量值的定量比较,并突出了每种方法的优点和缺点。
Cyclonic Ross Gyre(RG)占据了南大洋的西南太平洋地区(图1A)。水文数据(Gouretski,1999),卫星高度测定(Dotto等,2018)和建模(Rickard等,2010)的证据表明,RG在海面以下3,000 m以上,延伸了约20 sv,运输于约20 sv,占据了约20 sv的运输,占主导地位的大型热热结构。水平RG范围受到南部的大陆架断裂和北部和西部的太平洋 - 北极山脊(PAR)的限制(图1A)。RG的向南流动的东部肢体受地形的强烈约束(Patmore等,2019),其位置更可变(Dotto等,2018; Sokolov&Rintoul,2009)。东部RG肢体和邻近的南极圆极电流(ACC),向Amundsen Sea(AS)架子供应温暖的圆形深水(CDW)(Jenkins等,2016; Nakayama等,2018),在到达冰架腔时,它可以快速融化。这种海洋驱动熔化的增加会导致附近的Amundsen-Bellingshausen海洋中的冰盖变薄(Depoorter等,2013; Jenkins等,2016)。
两级发射器与光腔耦合的两层发射器取决于与状态周围密度的相互作用[1]。与弱耦合方案形成鲜明对比的是,发射器表现出percell增强的自发发射[2,3],发射异常的发射极强度g超过了发射机衰变速率(γ)和空腔损失速率(κ)与量子的量化量的量子和量子均与Emtrent的量子交换。它产生了光学响应中的狂犬病分裂,例如散射或光致发光(PL)光谱[4-8]。在这种强烈的耦合系统中,量子杂交状态的操作会诱导多种量子光学响应,从而导致量子光学设备的广泛应用[9-12]。在介电腔中,衍射量最大的模式体积分别需要高质量(Q)因子(Q)和低温才能实现强耦合,分别在κQ-1和γk b t之后[13-15]。高Q空腔导致发射极和腔之间的狭窄光谱重叠,即狭窄的呼声条件,以保持强耦合。这些约束显着构成了量子杂交状态的可控性,因此限制了强耦合方案中量子电动力现象的研究。最近,即使在室温下,由于其纳米级模式的体积,等离子腔的平台也达到了等离子和激子之间有效的强耦合[5,7,16]。
Muhammad Arif bin Jalil物理系,马来西亚Teknologi Universia,81310 Johor Bahru,Johor,Malaysia,马来西亚摘要:创建的第一个连续波(CW)激光是He-ne Laser。Ali Javan和他的同事W. R. Bennet和D. R. Herriott在Maiman宣布发明了脉冲红宝石激光器后几个月透露了CW He-Ne Laser的生产。霓虹灯原子在此四级气体激光器中被氦原子激发。激光灯是由霓虹灯的原子变化产生的。波长为632.8 nm的红光。除了产生各种紫外线和IR波长外,这些激光器还可能在可见光谱中产生绿色和黄光(Javan的第一个HE-NE在IR在1152.3 nm的IR操作)。可以通过利用用于这些可能的众多可能的激光跃迁之一的高反射镜来在单个波长下以单个波长进行单个波长的输出工作。它们不是具有高功率激光的发电机。在输出光强度(功率水平上的最小抖动)和波长(模式稳定性)方面,这些激光器的极端稳定性可能是其最著名的特征之一。He-Ne激光经常用于稳定其他激光器。它们也用于应用中,例如全息图,其中模式稳定性至关重要。He-Ne激光器一直在市场上占据主导地位,直到1990年代中期为低功率用途制造,例如射程发现,扫描,光学传输,激光指针等。但是,由于成本较低,其他类型的激光器最著名的是半导体激光器似乎在最近的竞争中取得了胜利。[30]关键字:He-ne激光器,能源,增益培养基,吸收,自发发射,刺激发射。
自从贝尔的不平等现象出现以来,很明显,局部隐藏的变量模型不能与量子力学的完整数学形式兼容[1,2,2,3,4]。的确,最近无漏洞的实验似乎与该结论一致[5,6,7,8]。尽管如此,仍然存在一个开放的问题,其中观察到的现象本质上是真正的量子,没有经典的类似物。这个阐明量子古典边界的问题是实际重要的,因为许多新的和新兴的技术,例如量子计算,量子通信和量子传感,都依赖于这种区别来实现其效果和安全性[9]。量子光学的领域似乎是探索这个问题的好地方,因为感兴趣的系统相对简单地以离散场模式来描述,而重要的光 - 物质相互作用可能仅限于光dection设备的物理学。量子光学的更好奇的方面之一是真空或零点字段(ZPF)的概念。在量子电动力学(QED)中,真空状态被定义为仅是给定领域模式的最低能量状态[10]。该状态下的光子数量为零,但其能量为非零,引起了“虚拟”光子的概念。尽管量子真空被视为仅是虚拟的,但其影响是非常真实的。现象,例如Casimir力量,范德华的吸引力,羔羊的移位和自发发射都有其起源在量子真空中[11]。量子光学中真空状态的突出性表明,它们可能在开发探索量子古典边界的物理理论中很有用。在这项工作中,我们将假设QED的量子真空是真实的,而不是虚拟的。这样做,我们将放弃对量子理论的所有正式参考,并考虑一个仅由古典物理学支配的世界,尽管在这种情况下,在这种世界中存在着重新的真空
在物理学中长期以来已经知道,当光被限制在很小的体积中时,可能会发生有趣的现象[1]。最著名的自发发射在腔中被光扩增,从而导致称为激光器的集体光子模式[2,3]。自从这一发现以来,对光腔的丰富研究传统已经发展出了一些开创性和基本发现。在当前的讨论中,特别有趣的是,光腔内的光线相互作用可以大大增强[4],因此,当物质被放置在光腔中时,双重光 - 亮点特征的准粒子可以形成,因此称为polaritons。已经产生了这些极化子的大量结果[5],并且仍在深入研究它们的形成和表征,并面临许多挑战。例如,在这一研究中,一个很大的里程碑是实现了极化玻色 - 因子凝结物[6,7]。最近开发的想法试图将焦点从极地转变为轻度驱动现象转向其形成对托管材料的作用。在一个称为极化化学的开创性领域中[8]光态状态用于增强和控制化学反应。形成极化子已通过改变势能格局来增强分子中的反应途径[9-14]。在没有实际光子的情况下。这种真空腔材料工程与通常广泛研究的集体效应和驱动(激发)偏振状态的凝结的情况形成鲜明对比。至关重要的是,在极化化学中表明,在强的耦合方案中,腔体中电磁场的真空波动可能会逐渐到电子结构的过渡,因此在黑暗腔中可以发生新的诱发现象,即类似地,与限制光子模式的空腔量子量子 - 电动力学耦合可以通过强烈耦合到真空波动的量子材料的性质进行更改。正式,根据自2010年初以来所做的工作,作为由欧洲研究委员会资助的两个主要项目的一部分(Dynamo 5和
1 John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA 2 QuTech, Delft University of Technology, PO Box 5046, 2600 GA Delft, The Netherlands, EU a) E-mail: kkuruma@seas.harvard.edu b) E-mail: loncar@seas.harvard.edu Abstract The ability to固体中的控制声子是从量子信息处理到传感的各种量子应用的关键。通常,声子是噪声和破坏性的来源,因为它们可以与各种固态量子系统相互作用。为了减轻这种情况,量子系统通常在毫米的温度下运行,以减少热声子的数量。在这里,我们演示了一种依赖于状态的工程语音密度的替代方法,从光子带隙结构中汲取了灵感,这些启发已用于控制量子发射器的自发发射。我们使用完整的Phononic带隙设计和制造钻石音调晶体,跨越50-70 gigahertz,量身定制,以抑制带有热浴的谐振声子的单个硅接收色中心的相互作用。在4开尔文时,我们证明了与大块相比,颜色中心的彩色中心的轨道弛豫率降低了18倍。此外,我们证明了声音带隙可以有效抑制高达20 kelvin的声子彩色中心相互作用。除了在较高温度下实现量子记忆的操作外,设计Qubit-Phonon相互作用的能力还可以使量子科学和技术的新功能能够使用,在该功能中,将声子用作量子信息的载体。工程量子系统与声子/振动的相互作用是广泛学科的重要任务,包括量子信息1-3,光电4,计量学5,能量收获6和传感7,8。相干的声子可以作为量子信息的载体9,10发挥重要作用,而热声子也会在单个量子水平下对许多量子系统的相干性质产生负面影响,并最终限制量子设备的连贯性11,12。解决此问题的最常见方法是在降低的温度下(通常在Milli-Kelvin范围内),以减少9,13,14的热声子的种群。但是,这种方法需要复杂且昂贵的低温系统,并且不会减轻
学期 - I PH-101物理-I 1。Special Theory of Relativity: Frame of Reference, Galilean Transformation, Inertial and Non-inertial frames, Postulates of Special Theory of Relativity, Michelson-Morley Experiment, Lorentz transformation of space and time, Length contraction, Time dilation, Simultaneity in relativity theory, Addition of velocities, Relativistic dynamics, Variation of mass with velocity, Equivalence of mass and energy.2。热物理学:Maxwell-Boltzmann分子速度的分布定律,R.M.S.S.S的评估以及平均速度和最可能的速度,平均自由路径,运输现象。3。几何光学:组合薄镜头,同轴光学系统的主要点,厚镜头,基数的位置和特性,牛顿公式,图像的图形结构。眼部碎片,修复点。光学仪器光谱计(棱镜和光栅),六分。4。物理光学:观察干扰的干扰条件。条纹的连贯性和可见性。使用菲涅尔的二倍主义生产干涉条纹和波长的测定。米其逊干涉仪及其用途。由于薄膜引起的干扰。楔形胶片。牛顿的戒指。衍射-Frasnel的衍射,菲涅耳的半个周期区域,区域板,Fraunhofer的衍射,单缝,双缝。平面光栅理论。主最大值的宽度。瑞利的决议标准。解决棱镜和光栅的能力。通过反射极化。极化 - 非极化,极化和部分极化的灯光。单轴晶体,宝丽来,Huygen的双重折射理论的双重折射。半波和四分之一波板。生产和分析平面椭圆形和圆形偏振光。光学活动。菲涅尔的光旋转理论,特定旋转,比夸夸兹和劳伦斯半阴影。5。全息图:基本原理,全息及其应用。6。激光器:刺激和自发发射,爱因斯坦系数,刺激和自发排放的相对贡献,种群反演,激光发射,红宝石和He-ne激光器,激光光的特征。7。声学:超声波的生产和检测,液体中速度的测量,超声处理的应用。建筑物的典范。参考文献1。Mechanics-D.S.Mathur 2。optics-a.k.ghatak 3。热力和热力学-Brijlal&Subramanium 4。热物理b.k.agarwal 4。振荡和波的物理学 - r.b.singh 5。工程物理-A.S.S.Vasudeva