在物理学中长期以来已经知道,当光被限制在很小的体积中时,可能会发生有趣的现象[1]。最著名的自发发射在腔中被光扩增,从而导致称为激光器的集体光子模式[2,3]。自从这一发现以来,对光腔的丰富研究传统已经发展出了一些开创性和基本发现。在当前的讨论中,特别有趣的是,光腔内的光线相互作用可以大大增强[4],因此,当物质被放置在光腔中时,双重光 - 亮点特征的准粒子可以形成,因此称为polaritons。已经产生了这些极化子的大量结果[5],并且仍在深入研究它们的形成和表征,并面临许多挑战。例如,在这一研究中,一个很大的里程碑是实现了极化玻色 - 因子凝结物[6,7]。最近开发的想法试图将焦点从极地转变为轻度驱动现象转向其形成对托管材料的作用。在一个称为极化化学的开创性领域中[8]光态状态用于增强和控制化学反应。形成极化子已通过改变势能格局来增强分子中的反应途径[9-14]。在没有实际光子的情况下。这种真空腔材料工程与通常广泛研究的集体效应和驱动(激发)偏振状态的凝结的情况形成鲜明对比。至关重要的是,在极化化学中表明,在强的耦合方案中,腔体中电磁场的真空波动可能会逐渐到电子结构的过渡,因此在黑暗腔中可以发生新的诱发现象,即类似地,与限制光子模式的空腔量子量子 - 电动力学耦合可以通过强烈耦合到真空波动的量子材料的性质进行更改。正式,根据自2010年初以来所做的工作,作为由欧洲研究委员会资助的两个主要项目的一部分(Dynamo 5和
主要关键词