限制在光学晶格中的极性分子是一个多功能平台,可用于探索基于强、长程偶极相互作用的自旋运动动力学 1,2。Ising 和自旋交换相互作用在微波和直流电场下的精确可调谐性 3 使分子系统特别适合于设计复杂的多体动力学 4–6 。在这里,我们使用 Floquet 工程 7 来实现极性分子的新型量子多体系统。使用在超冷 40 K 87 Rb 分子的两个最低旋转状态中编码的自旋,我们通过观察 Ramsey 对比动力学相互验证了由 Floquet 微波脉冲序列调整的 XXZ 自旋模型与由直流电场调整的模型。该验证为实现静态场无法实现的哈密顿量奠定了基础。特别地,我们观察到了双轴扭曲 8 平均场动力学,它是由 Floquet 设计的 XYZ 模型使用二维层中的巡回分子产生的。未来,弗洛凯设计的哈密顿量可以产生纠缠态,用于基于分子的精密测量9,或者可以利用丰富的分子结构进行多级系统的量子模拟10,11。
摘要:光的自旋霍尔效应是一种通过光接口处的横向和旋转依赖性分裂形成的现象,对于从界面和依据的精确定量数据而言是一种吸引人的选择,是提高精度元学的一种吸引人的选择。这种高度的精度归因于弱测量的原理。自从其概念引入以来,通过弱测量技术从经验上观察到了光的旋转效果,并紧密地遵循了最初提出的实验配置。最近,有人建议将设置缩小尺寸,而精确度损害了。在这里,通过观察反映和
宏观系统中的时间反转与日常经验相矛盾。仅通过时间反转导致杯子破碎的微观动力学,几乎不可能将破碎的杯子恢复到其原始状态。然而,借助现代量子技术提供的精确控制能力,量子系统的幺正演化可以随时间逆转。在这里,我们在原子气体中的里德堡态表示的偶极相互作用、孤立多体自旋系统中实施时间反转协议。通过改变编码自旋的状态,我们翻转了相互作用哈密顿量的符号,并通过让退磁多体状态随时间演化回磁化状态来展示磁化弛豫动力学的逆转。我们使用洛施密特回声的概念阐明了原子运动的作用。最后,通过将该方法与弗洛凯工程相结合,我们展示了具有不同对称性的大量自旋模型的时间反转。我们的状态转移方法适用于广泛的量子模拟平台,其应用范围远远超出量子多体物理学,涵盖从量子增强传感觉到量子信息扰乱。
量子计算(特别是可扩展量子计算和纠错)的一个关键要求是快速且高保真度的量子比特读出。对于基于半导体的量子比特,局部低功率信号放大的一个限制因素是电荷传感器的输出摆幅。我们展示了 GaAs 和 Si 非对称传感点 (ASD),它们专门设计用于提供比传统电荷传感点大得多的响应。我们的 ASD 设计具有与传感器点强烈分离的漏极储液器,这减轻了传统传感器中的负反馈效应。这导致输出摆幅增强 3 mV,这比我们设备传统状态下的响应高出 10 倍以上。增强的输出信号为在量子比特附近使用超低功率读出放大器铺平了道路。
磁性材料中的自旋波具有超低能量耗散和长相干长度,是未来计算技术的有前途的信息载体。反铁磁体是强有力的候选材料,部分原因是它们对外部场和较大群速度的稳定性。多铁性反铁磁体,例如 BiFeO 3 (BFO),具有源于磁电耦合的额外自由度,允许通过电场控制磁结构,从而控制自旋波。不幸的是,由于磁结构的复杂性,BFO 中的自旋波传播尚不明确。在这项工作中,在外延工程、电可调的 1D 磁振子晶体中探索了长距离自旋传输。在平行于和垂直于 1D 晶体轴的自旋传输中发现了显著的各向异性。多尺度理论和模拟表明,这种优先磁振子传导是由其色散中的群体不平衡以及各向异性结构散射共同产生的。这项工作为反铁磁体中的电可重构磁子晶体提供了途径。
二维半金属在磁性纳米器件中展现出巨大的潜力。然而,二维半金属的发现仍然基于逐案评估。本文,我们提出了设计具有大自旋间隙的二维过渡金属基半金属的一般规则,即找到具有洪特规则分裂的 d 轨道和深阴离子 p 轨道能级以使 dp 相互作用最小化的材料。基于对具有扭曲四面体晶场的 54 种过渡金属化合物 MX 2(M = 3 d 区过渡金属;X = VIA-VIIA 元素)的 DFT 计算,我们发现所有铁磁化合物都表现出半金属性。我们将半金属性归因于具有弱 dp 轨道杂化的 M 阳离子的部分填充 d 轨道的洪特规则分裂。由于 Cl p 轨道能级较深(− 8.4 eV),氯化物表现出大于 4 eV 的自旋间隙。我们在过渡金属三氯化物 M Cl 3(M = 3 d 区过渡金属)中验证了这一规则。利用这一规则,我们预测铁磁单层 M Cl 和 M 3 Cl 8(M = 3 d 区过渡金属)是具有大带隙的半金属。这项工作丰富了二维半金属的种类,并可能带来新型磁性纳米器件。
摘要 — 自旋电子逻辑器件最终将用于混合 CMOS-自旋电子系统,该系统通过传感器在磁场和电域之间进行信号相互转换。这强调了传感器在影响此类混合系统整体性能方面的重要作用。本文探讨了以下问题:基于磁隧道结 (MTJ) 传感器的自旋电子电路能否胜过其最先进的 CMOS 同类电路?为此,我们使用 EPFL(洛桑联邦理工学院)组合基准集,在 7 nm CMOS 和基于 MTJ 传感器的自旋电子技术中合成它们,并在能量延迟积 (EDP) 方面比较这两种实现方法。为了充分利用这些技术的潜力,CMOS 和自旋电子实现分别建立在标准布尔门和多数门之上。对于自旋电子电路,我们假设域转换(电/磁到磁/电)是通过 MTJ 执行的,计算是通过基于域壁 (DW) 的多数门完成的,并考虑了两种 EDP 估计方案:(i) 统一基准测试,忽略电路的内部结构,仅将域传感器的功率和延迟贡献纳入计算,以及 (ii) 多数-反相器-图基准测试,还嵌入了电路结构、相关关键路径延迟和 DW 传播的能量消耗。我们的结果表明,对于统一情况,自旋电子路线更适合实现具有少量输入和输出的复杂电路。另一方面,当也通过多数和反相器综合考虑电路结构时,我们的分析清楚地表明,为了匹配并最终超越 CMOS 性能,MTJ 传感器的效率必须提高 3-4 个数量级
为了促进从碳能源依赖型社会向可持续社会的转变,传统的工程策略应进行范式转变,因为它们受到与内在材料特性相关的限制。从理论角度来看,氧析出反应(OER)的自旋相关特性揭示了自旋极化策略在提高电化学(EC)反应性能方面的潜力。手性诱导自旋选择性(CISS)现象因其在实现新突破方面的潜在效用而引起了前所未有的关注。本文从旨在提高自旋相关OER效率的实验结果开始,重点关注基于CISS现象的EC系统。通过各种分析方法验证了自旋极化对EC系统的适用性,以阐明自旋相关反应途径的理论基础和机制。然后将讨论扩展到基于CISS效应的光电化学系统中有效的自旋控制策略。本文探讨了自旋态控制对动力学和热力学方面的影响,还讨论了 CISS 现象引起的自旋极化对自旋相关 OER 的影响。最后,讨论了增强自旋相关氧化还原系统性能的未来方向,包括扩展到各种化学反应和开发具有自旋控制能力的材料。
复合材料是多组分系统,其功能由其成分之间的相互作用决定。化合物的均匀性取决于材料、材料之间的相互作用和合成,并对性能产生重大影响。纳米粒子已被证明可以通过降低界面张力变成表面活性剂来促进不混溶液体的混合 [ 1 ],并可能导致不混溶和可混溶聚合物溶液之间的可逆转变。将磁性纳米粒子添加到分子铁电体中可以合成多铁性材料 [ 2 – 4 ]。尽管自旋交叉复合物本身可以形成纳米粒子 [ 5 – 7 ],但将磁性纳米粒子添加到自旋交叉分子中的研究很少。 [Fe(Htrz) 2 (trz)](BF 4 )(Htrz = 1H-1,2,4-三唑,trz − = 去质子化三唑配体)[7 – 12]就是这样一种自旋交叉复合物,它也已与纳米粒子结合[13, 14]。[Fe(Htrz) 2 (trz)](BF 4 )的特点是自旋态随温度变化而转变,从而引起电导率的变化[9, 15 – 19]。这种特定分子的自旋交叉转变温度通常为 (340–360) K,在接近室温时产生自旋态双稳态[8 – 12, 15 – 20]。通过添加聚苯胺 (PANI) [ 19 , 21 ] 或聚吡咯 [ 21 , 22 ],所得均质复合材料的导通电阻可降低至 < 1 Ω · cm,从而使更小的分子器件成为可能 [ 23 ],而不会因高阻抗而导致长延迟时间。为了了解自旋交叉复合物中自旋态间双稳态协同效应的修改 [ 24 ],已经采用了多种技术 [ 25 – 27 ]。虽然用金属取代 [Fe(Htrz) 2 (trz)](BF 4 ) 中的 Fe 会降低电导率 [ 18 ],但添加 Fe 3 O 4 等金属纳米颗粒可以通过驱动形态变化完全避免此问题。充分利用此类多组分系统的潜力以及由于添加纳米颗粒而产生的修改需要
层状二维 (2D) 材料主要通过范德华键相互作用,这为不受外延晶格匹配要求约束的异质结构创造了新的机会 [1]。然而,由于任何钝化的、无悬空键的表面都会通过非共价力与另一个表面相互作用,因此范德华异质结构并不仅限于二维材料。具体来说,二维材料可以与多种其他材料(包括不同维度的材料)集成,形成混合维度范德华异质结构 [2]。此外,化学功能化为调整二维材料的性质和异质界面间的耦合程度提供了更多机会 [3]。在本次演讲中,我们将探讨混合维度异质结构在量子光子科学和技术中的前景,特别关注化学功能化如何操纵和增强应变二维过渡金属二硫属化物中的单光子发射 [4]。除了技术含义之外,本次演讲还将探讨几个基本问题,包括能带排列、掺杂、陷阱态以及跨混合维异质界面的电荷/能量转移。