超导二极管效应(SDE)是一种磁电现象,其中外部磁场将非零的质量中心动量赋予库珀对,以促进或阻碍根据其方向促进超级电流的流动。我们提出,基于量子的自旋霍尔绝缘子(QSHI)的约瑟夫森连接器可以用作非隔离电子设备的多功能平台,当通过相位偏置和非平面磁场触发时,该平台表现出SDE。通过计算Andreev结合状态和准颗粒状态的连续体的贡献,我们提供了数值和分析结果,审查了SDE的各个方面,包括其质量Q因子。发现Q因子的最大值在低(零)温度下是通用的,它的起源与独立于交界处的特定细节的潜在拓扑特性相关。随着磁场的增加,由于轨道效应引起的诱导超导间隙的关闭,SDE减小了。要观察SDE,必须设计基于QSHI的Josephson结,以使其边缘具有不务件的运输。此外,我们在一个更具异国情调但现实的场景中探索了SDE,在驱动电流时,约瑟夫森交界处的典型地面态奇偶校仍然保守。在这种4π的周期情况下,我们预测SDE的增强是与其2π-周期性的,平等无限的对应物相比的增强。
用于量子纠缠和量子逻辑操作的自旋 - 光子接口该项目旨在控制最基本层面的光与物质之间的相互作用:Qubits。为此,我们最近在单个材料值(单电荷的旋转)和单个光子量子位(单个光子的极化)之间开发了有效的界面。我们的界面使用半导体孔携带的自旋量子置量位,限制在纳米尺度的INAS量子点(QD)中,确定性地耦合到电触发的微型腔。正如我们所证明的那样,这种QD-腔结构反映的光子经历了其极化的极化旋转,顺时针或逆时针,这取决于旋转状态(见图1。使用确定性耦合的自旋光子接口2和极化状态层析成像实验3,我们实现了光子极化状态的完整逆转,由单个旋转4控制。最近,我们使用单个光子5证明了单个旋转的光学探测。在这样的实验中,每个检测到的光子都会在拟议的实习和以下博士学位论文提供的旋转量子量量子上进行测量反作用,我们希望探索此类自旋光子接口的观点以获取量子信息。最终的目标是展示新形式的自旋 - 光子纠缠和光子 - 光子纠缠,并发展由自旋 - 光子相互作用介导的逻辑门。在途中,我们还将执行基本的量子测量,并研究自旋及其固态基质之间的相互作用。C2N组的所有技术,实验和理论专业知识都将成功地领导该项目。我们欢迎具有质量物理,光学和/或固态物理学背景优秀背景的高度动力申请人,并且对理论和数值模拟有品味。
最近,在理论上提出并实现了电子状态的自旋分裂(SS)的非常规的抗铁磁铁,其中包含指向不同方向的矩矩的磁性sublattics通过一组新型的符号来连接。这样的SS是实质性的,依赖性的,并且与自旋 - 轨道耦合(SOC)强度无关,使这些磁铁有望用于抗磁性旋转旋转。在此结合了角度分辨光发射光谱(ARPE)和密度功能理论(DFT)计算,这是一项对CRSB的系统研究,是一种金属旋转式抗速率抗fiferromagnet候选,具有Néel温度T n = 703 K。数据揭示了沿平面外和平面动量方向的CRSB的电子结构,从而使各向异性K依赖性SS与计算结果非常吻合。在非对称动量点下,此类SS的大小至少达到至少0.8 eV,这显着高于最大的已知SOC诱导的SS。这种化合物扩大了抗磁性旋转型材料的材料的选择,并且很可能会刺激随后对在室温下起作用的高效率旋转器件的研究。
图4:管道生产的工作台场景,以评估注册和掩盖精度。分别通过细绿色和蓝色线条显示了自由表面的白色和曲面。ASL体积脑面膜轮廓显示在洋红色中。白色盒子表示ASL获取的视野,转变为ASL网格的T1W空间。青色线(在矢状视图中在小脑的底部看到)表示位于视野外的ASL脑面膜的一部分。Greyscale中的基本图像是完整335
镁带结构的特征是与手性相反的模式的能量分裂,即使在没有应用的外部领域和相对论效应的情况下,由于海森伯格交换相互作用中的各向异性。我们基于原型RUO 2(一种原型的“ D-Wave” Altermagnet)对基于从头开始的电子结构计算进行定量原子自旋动力学模拟,以研究由热梯度产生的镁电流。我们报告了大量自旋Seebeck和自旋Nernst效应,即纵向或横向自旋电流,具体取决于磁子相对于晶体的繁殖方向,以及与温度ProFile中的非线性相关的有限自旋积累。我们的发现与Altermagnetic自旋组对称性以及线性自旋波理论和半经典Boltzmann转运理论的预测一致。
Tristan 是一位国际知名的实验物理学家,因其在量子点阵列中相干传输和自旋操控方面的开创性研究而闻名。他在巴黎高等师范学院 (ENS) 的卡斯特勒布罗塞尔实验室 (LKB) 获得博士学位,师从诺贝尔奖获得者 Serge Haroche,随后在代尔夫特理工大学获得博士后奖学金,该大学是自旋量子比特实验研究的先驱中心。在加入 Quobly 担任全职 CTO 之前,Tristan 还曾领导法国国家科学研究中心 (CNRS) 格勒诺布尔的量子自旋量子比特社区。
摘要:我们预测磁性铬基过渡金属二硫属化物 (TMD) 单层在其 Janus 形式 CrXTe(其中 X = S、Se)中具有非常大的自旋轨道扭矩 (SOT) 能力。Janus 结构固有的结构反演对称性破坏导致巨型 Rashba 分裂产生较大的 SOT 响应,相当于在非 Janus CrTe 2 中施加 ∼ 100 V nm −1 的横向电场所获得的响应,这完全超出了实验范围。通过对精心推导的 Wannier 紧束缚模型进行传输模拟,发现 Janus 系统表现出与最有效的二维材料相当的 SOT 性能,同时由于其平面内对称性降低,还允许无场垂直磁化切换。总之,我们的研究结果表明,磁性 Janus TMD 是超紧凑自感应 SOT 方案中终极 SOT-MRAM 设备的合适候选者。关键词:自旋轨道扭矩、过渡金属二硫属化物、二维材料、范德华铁磁体
在过去的十年中,在理论上和实验中提出了确认,可以通过旋转纹理(ST-LRT)或由于Spin-Orbit Coupling(Soc-orbit Couplting(Soc-lrrt)(Soc-lrt)(Soc-orbit(Soc-lrtt)),可以在超导/Ferromagnet杂交中产生远距离旋转旋转三个(LRT)超导性。然而,迄今为止,尚无理论或实验研究表明,这两种贡献都可以同时存在于实验系统中。为了解除这些贡献,我们通过研究与MacMillan-Rowell共振相关的上述差异电导异常(CAS),对在连接超导体的铁磁层内发生的超导式准颗粒干扰效应进行了全面研究。在两种类型的外延,v/mgo/fe基于界面旋转式矛盾偶联的两种类型的外延/f/fe基于v/fe/fe的磁场下,已经研究了CAS的偏差依赖性。我们观察到在小的IP和OOP磁场下CA振幅的各向异性,同时仍然受到高铁的影响较弱,并实施微磁模拟,以帮助我们区分ST-LRT和SOC-LRT贡献。我们的发现表明,对电子传输中Fabry-Pérot-type干扰效应的进一步探索可以产生对由自旋轨道耦合和自旋纹理引起的超导体和铁磁体之间杂交的宝贵见解。
受“制造商运动”的启发,Make课程的目的是向学生介绍工程设计过程后的设备的创意设计和制造。该课程将教学学生设计“机电”设备所需的基本技能(即结合了电子,机械和基于软件的组件的设备)。学生将学习使用3D设计软件,微控制器(Arduino)的编程以及构建电子控制电路。该课程将通过教室中的直接指导来教授。所有学生将在本课程中设计和构建原型设备。该课程还将引入现代制造过程,例如3D打印和激光切割,并介绍项目计划和成本估算。