富含库仑结合的准粒子的物理学,例如激发剂和过渡金属二甲基元素单层中的trions,目前在冷凝的物质群落中正在进行深入研究。这些准颗粒在100 MEV的顺序上具有较高的结合能,表现出强烈的光耦合,并且可以将量子信息存储在自旋valley自由度中[1]。实现超快时间标准上激素状态的外部控制的策略已成为重要的研究途径。在这里,我们报告了在HBN封装的Mose 2单层中观察到瞬态Trion到脱位的转换(图1a)是由在红外自由电子激光设施(Felbe)(Felbe)[2,3]产生的Picsecond TimeScales上的强烈Thz脉冲引起的。随后通过用条纹摄像头记录时间分辨的光量(TRPL)光谱来监测激子动力学。可见的脉冲(= 400 nm)激发了激动的激子和Trions的种群(图1b,无脉冲脉冲的trpl光谱)。通过在大约30次皮秒延迟后添加THZ脉冲相对于可见的激发(图1C),我们观察到Trion发射的淬火和激发激素发射的暂时增亮。此外,通过调整Thz脉冲的频率,我们记录了TRIONS的THZ解离光谱(图1d)。重要的是,当THz光子能量等于或高于Trion结合能时,可以观察到有效的Trion TRION转换。在其他机构中观察到THZ辐射的相似影响,例如WSE 2单层和Mose 2 /WSE 2异质结构。总的来说,结果为低维材料中的许多粒子状态的外部控制开辟了有希望的途径。
13106-10 • 生成自由电子和波导光子的相关对,Jan-Wilke Henke、Armin Feist、马克斯普朗克多学科科学研究所(德国)、IV. Physikalisches Institut、Georg-August-Univ。哥廷根(德国);黄冠豪,洛桑联邦理工学院物理研究所(瑞士),中心。洛桑联邦理工学院(瑞士)量子科学与工程系; Germaine Arend,马克斯普朗克多学科科学研究所(德国),IV. 物理研究所,乔治奥古斯特大学。哥廷根(德国); Yujia Yang、Arslan S. Raja、洛桑联邦理工学院物理研究所(瑞士)、中心。洛桑联邦理工学院(瑞士)量子科学与工程系; F. Jasmin Kappert,马克斯普朗克多学科科学研究所(德国),IV. 物理研究所,乔治奥古斯特大学。哥廷根(德国);潘嘉禾,洛桑联邦理工学院物理研究所(瑞士),中心。洛桑联邦理工学院(瑞士)量子科学与工程系; Hugo Lourenco-Martins,马克斯普朗克多学科科学研究所(德国),IV. 物理研究所,Georg-August-Univ.哥廷根(德国); Zheru Qiu、Junqiu Liu,洛桑联邦理工学院物理研究所(瑞士),中心。洛桑联邦理工学院(瑞士)量子科学与工程系; Ofer Kfir,马克斯普朗克多学科科学研究所(德国),IV. 物理研究所,乔治奥古斯特大学。哥廷根(德国); Tobias J. Kippenberg,洛桑联邦理工学院(瑞士)物理研究所,中心。洛桑联邦理工学院(瑞士)量子科学与工程系;克劳斯·罗珀斯,马克斯·普朗克多学科科学研究所(德国),乔治·奥古斯特大学物理研究所。哥廷根(德国)
半导体的飞秒激光处理已演变为成熟的高精度制造技术,从而实现了广泛的应用。最初大多数研究都采用了近乎红外波长的脉冲,但由于不同的激发条件,由于较短的光学渗透深度,因此使用紫外线激光脉冲的兴趣正在不断增加,从而导致分辨率提高。在这种情况下,为了理解和最终控制复杂的相变途径,需要对这种脉冲触发的相变的时间动力学进行基础研究。在这里,我们报告了一项详细的时间分辨研究,以使用单个400 nm,100 fs激光脉冲在中等和高激发方向进行辐照后,晶体硅和锗的相变动力学。为此,我们采用了FS分辨的光学显微镜,探头波长为800 nm,以研究辐照表面的反射率演变,范围从100 fs到20 ns,范围为100 fs。在中等激发的情况下,数据揭示了激光诱导的过程的整个序列,从产生自由电子等离子体,非热融化,消融和半透明消融层的膨胀层的扩展。在峰值流体的激发时超过30倍消融阈值,观察到异常的瞬态高反射率态,这可能表明了后坐压力诱导的液体 - 液相相变。 此外,在中度的辐射后,两种材料形成了70 nm厚的无定形表面层。超过30倍消融阈值,观察到异常的瞬态高反射率态,这可能表明了后坐压力诱导的液体 - 液相相变。此外,在中度的辐射后,两种材料形成了70 nm厚的无定形表面层。总体而言,我们的结果提供了有关FS-Pulse激发在近绿色波长范围内两种材料的最终状态的相关信息。
这也使得直接在原子水平上研究酶反应的整个过程成为可能,为酶学的新领域打开了大门。这将是根据反应中间体的结构(即酶的真实活性状态)合理设计催化剂和药物的第一步。 出版信息 标题:在原子分辨率下可视化光裂解酶的 DNA 修复过程 作者:Manuel Maestre-Reyna*、Po-Hsun Wang、Eriko Nango、Yuhei Hosokawa、Martin Saft、Antonia Furrer、Cheng-Han Yang、Eka Putra Gusti Ngurah Putu、Wen-Jin Wu、Hans-Joachim Emmerich、Nicolas Caramello、Sophie Franz-Badur、Chao Yang、Sylvain Engilberge、Maximilian Wranik、Hannah Louise Glover、Tobias Weinert、Hsiang-Yi Wu、Cheng-Chung Lee、Wei-Cheng Huang、Kai-Fa Huang、Yao-Kai Chang、Jianh-Haur Liao、Jui-Hung Weng、Wael Gad、Chiung-Wen Chang、Allan H. Pang、Kai-Chun Yang、Wei-Ting Lin、 Yu-Chen Chang、Dardan Gashi、Emma Beale、Dmitry Ozerov、Karol Nass、Gregor Knopp、Philip JM Johnson、Claudio Cirelli、Chris Milne、Camila Bacellar、Michihiro Sugahara、Shigeki Owada、Yasumasa Joti、Ayumi Yamashita、Rie Tanaka、Tomoyuki Tanaka、Fangjia Luo、Kensuke Tono、Wiktoria Zarzycka、Pavel Müller、Maisa Alkheder Alahmad、Filipp Bezold、Valerie Fuchs、Petra Gnau、Stephan Kiontke、Lukas Korf、Viktoria Reithofer、Christian Joshua Rosner、Elisa Marie Seiler、Mohamed Watad、Laura Werel、Roberta Spadaccini、Junpei Yamamoto、So Iwata、Dongping Zhong、Joerg Standfuss、Antoine Royant、Yoshitaka Bessho*, Lars-Oliver Essen*, Ming-Daw Tsai* <杂志> Science < DOI > 10.1126/science.add7795 补充信息 [1] X射线自由电子激光器(XFEL)
2020年8月21日收到;以修订的表格收到2020年10月27日; 2020年10月30日接受;自锂离子电池发明以来,在线在线摘要,充电策略已获得了多年来的认可和研究。在本文中,在各种操作和充电载荷期间,通过三种广泛使用的工具监视了带有锂聚合物电池的笔记本电脑。获得了几个钥匙值,以评估电池周期,充电百分比和排放深度之间的相关性。最终结果表明,应避免使用设备的大量放电和连续的操作,尽管高负载任务需要连接AC充电器。确保电池保持在安全温度和充电范围内可以延长细胞寿命和状态,并防止电池内部的锂沉积物。版权所有©2020国际能源与环境基金会 - 保留所有权利。关键字:锂;电池;细胞;国防部释放;周期;存款;笔记本电脑;容量;聚合物。1。简介锂离子电池是每种现代应用的强大产品。它们用于微电子,例如智能手机,笔记本电脑,相机,警报和电动汽车,基本上需要电池。由Akira Yoshino开发的,根据Goodenough的团队研究[1],它们很快就在储能中占主导地位。研究人员大规模尝试降低成本并使其安全性[2]之后,索尼公司发布了第一个大型商业产品,因为高可易燃性,氧化和低充电周期。它们由铜阳极和铝阴极(后来在氧化锂上)组成,用液体电解质分离。工作原理很简单,如图1。锂离子的运动在阳极中产生自由电子,因此在阳性收集器处产生电荷。然后电流将负载流到负电流收集器。分离器阻止电池内的电子流[3]。从那时起,它们的演变就巨大[4,5],测试不同的元素,以确保能量密度和成本节省[6]。2。锂聚合物电池即使锂离子电池足够,也需要提高电池寿命和能量密度将研究转向另一种形式的锂离子电池:锂聚合物或Li-Po电池。这种电池
伽玛射线对象:了解伽玛射线与物质的各种相互作用。使用已知能量的伽马射线校准伽马射线闪烁光谱仪,并使用它来测量“未知”伽马射线的能量。使用正电子歼灭辐射来确定电子的质量并观察相关的伽马射线。读数:实验室手册(请参阅补充阅读)“核科学实验” AN34,EG&G ORTEC提供了有关许多本科核试验的背景和技术的精彩动手讨论。所描述的设备类似于实验室中可用的设备。在本文末尾给出了其他读数。设备:NAI:具有集成前置放大器(2),高压电源,堪培拉型号2000电源的TL闪烁体和光电倍增管检测器,NIM BIN,NIM BIN,NIM BIN,CANBERRA 2015A放大器/单通道分析仪模块(2) (PCA-II)CompuAdd 286个人计算机,Analyzer软件,监视器的董事会。背景:在本实验中,您将通过检测腐烂产生的伽马射线来研究核的放射性衰变。γ射线检测是一个多步骤过程:伽马射线进入NAI:TL闪烁体晶体,在其中产生了快速移动的自由电子,进而通过在晶体中行驶时在路径中激发离子而失去能量。这种激发能以各种方式释放出来,其中一种是可见光的发射(荧光)。因此,进入闪烁体的单个高能伽马射线会产生低能光子的闪光。这些光子针对光电倍增管的光敏表面,它们通过光电效应弹出电子。电子被收集在光电培养基中并放大以产生电流脉冲,该脉冲转换为电压脉冲,其高度与光电子的数量成正比,因此与到达管的光子数量成正比,这又与快速电子的初始能量成正比。当放射性源位于闪烁体附近时,光电层流会产生一系列脉冲,每个脉冲对应于单个核的衰变。每个脉冲的幅度与伽马射线释放的电子能量有关。使用单通道分析仪研究这些脉冲。单个通道分析仪(SCA)计数电压脉冲的数量
各种粒子探测器在雷暴期间探测到的地球表面粒子爆发源自相对论性失控电子雪崩 (RREA),这种雪崩是由强大气电场中加速的自由电子引起的。雷雨云中两个方向相反的偶极子将电子加速到地球表面和开放空间的方向。轨道伽马射线天文台观测到的粒子爆发称为地面伽马射线闪光 (TGF),能量为几兆电子伏,有时仅达到几十兆电子伏;地面粒子探测器记录的粒子爆发称为雷暴地面增强 (TGE),能量通常达到 40-50 兆电子伏。对流层中的气球和飞机记录到伽马射线辉光(能量为几兆电子伏)。最近,高能大气物理学还包括所谓的向下 TGF (DTGF),即持续时间为几毫秒的强烈粒子爆发。众所周知的广泛空气簇射 (EAS) 源自星系质子和完全剥离的原子核与大气原子的相互作用。EAS 粒子在簇射轴周围具有非常密集的核心。然而,EAS 核心中的高能粒子由非常薄的圆盘组成(几十纳秒),并且 EAS 核心穿过的粒子探测器不会记录粒子爆发,而只会记录一个非常大的脉冲。只有中子监测器才能记录粒子爆发,它通过收集 EAS 核心粒子与土壤相互作用产生的延迟热中子来记录粒子爆发。我们讨论了最大粒子阵列中可获得的短粒子爆发与 EAS 现象之间的关系。我们证明中子监测器可以将 EAS 的“寿命”延长至几毫秒,与 DTGF 的持续时间相当。我们还讨论了使用中子监测器网络进行高能宇宙射线研究的可能性。简明语言摘要:在太空、对流层和地球表面记录了短粒子爆发和长粒子爆发。通过对粒子通量、近地表电场和闪电的协调监测,可以提出关于强烈爆发的起源及其与广泛空气簇射和大气放电的关系的假设。通过对观测数据和粒子爆发可能起源情景的分析,我们可以得出结论:爆发可以用雷鸣大气中的电子加速以及由高能质子和银河系中完全剥离的原子核加速在地球大气中形成的巨大簇射来解释。
定量矿物分析James Bond 1,Louis Giroux 2 1 Pvatepla America 251 Corporate Terrace Corona CA 92879; 2加拿大Canmetenergy自然资源1 Haanel Drive,渥太华,K1A 1M1,加拿大关键词:低温,血浆,煤炭,煤炭,分析摘要理解煤炭中矿物质的性质和分布,从而产生了有关煤炭地质形成的重要信息,以及矿物质对煤炭利用的影响,包括燃烧和碳化。具体来说,了解煤矿开采及其燃烧副产品的环境影响是改善燃煤电厂技术的重要信息。同样,冶金煤中矿物质成分的知识及其在焦化过程中的转化对于改善我们对反应后的可乐反应性指数,CRI和可乐强度的解释很重要,CSR。作为矿物质是煤炭的次要组成部分,在使用传统的矿物学技术(包括定量X射线衍射)进行研究之前,它需要通过去除其有机含量来集中。使用低温血浆有效地实现了这一点。这是通过将煤研磨成细粉(通常小于212µm)的,然后使用氧血浆加入的细粉来完成,然后再混合煤并进一步加重,直到获得恒定的重量。对于痕量元素分析,该过程更多地参与其中,并结合了通过ICP-AES或ICP-MS等方法的质量溶解和分析。我们将提供数据,显示使用低温(40至50 o C)血浆的有机样品重量减少了煤,焦炭和油砂样品。大多数样品表明,使用100瓦的13.56MHz RF功率在100瓦和250瓦和250 scc/min o 2气流的情况下,呼吸时间为100至150小时,足以完全消除这些物质/可燃物质。简介什么是等离子体?:等离子体是一种物质状态,就像固体,液体或气体一样。为气体增加足够的能量,并部分将其电离为物质的第四个状态 - 等离子体(图1)。可以通过应用电场来加速等离子体中存在的自由电子。通过与这些快速移动电子的碰撞来化学激活馈入血浆的气体。结果是一个高度化学反应性的环境,可用于处理材料表面。血浆的一种重要用途是从表面的有机物的低温燃烧
1 简介 光源和中子源通过捕捉复杂物质的结构和电磁动力学,在理解不同时间和长度尺度上复杂物质的基本特性方面发挥着关键作用。这些科学设施依赖于人类建造的一些最复杂的机器。例如,X射线自由电子激光器(XFEL)由粒子加速器驱动,产生高度相干的光以对样品进行详细成像,其操作需要许多子系统的紧密集成:高性能粒子加速器、产生X射线的灵敏磁波荡器、高功率X射线光学器件以及复杂的探测器和复杂的样品环境(例如与超快激光器同步泵浦)。全面利用光源和光束线的功能可以在生物学、化学、物理学和材料科学等广泛领域带来新的科学发现。越来越复杂的仪器和光源功能可以实现前所未有的测量,从而揭示物质的基本特性。然而,相对于巨大的实验需求,中子和光源的稀缺导致分配的光束时间短缺。因此,迫切需要开发实时数据分析和实验指导能力,以有效利用有限的实验时间并最大限度地提高收集数据的科学价值。此外,还需要减少目前花在设置设施以交付给不同实验上的大量时间。光源实验可以从数字孪生 (DT) 技术中受益匪浅,该技术可以利用先前的测量、已知参数和理论来指导实验期间的采样策略并产生独特的科学见解。DT 对于简化用户设施的运行至关重要,这涉及复杂的系统控制。光源也是开发和部署 DT 技术的理想试验台。此类试验台的经验对于开发可靠、可持续、可互操作的 DT 基础设施至关重要,这些基础设施可用于美国国家利益的众多应用领域(气候、能源网等)。复杂光源的一个突出例子是独一无二的高重复率它们是高度动态的系统,随着时间的推移,条件会发生许多有意和无意的变化,它们由多个复杂的相互作用的子系统组成,这些子系统需要协同运行才能获得最佳性能,它们具有可以轻松利用和与测量数据融合的物理模拟,与许多其他应用程序相比,它们为探索 DT 概念提供了更封闭的环境(例如,与全球气候的 DT 相比),并且全球有许多具有共享设计的光源,从而能够探索易于跨系统互操作和交换的技术。
第 6 章 场发射 6.1 简介 电子束在许多应用和基础研究工具中起着核心作用。例如,电子发射用于阴极射线管、X 射线管、扫描电子显微镜和透射电子显微镜。在许多此类应用中,希望获得高密度的窄电子束,且每束的能量分布紧密。所谓的电子枪广泛用于此目的,它利用热阴极的热电子发射来操作。然而,由于发射电子的热展宽,实现具有窄能量分布的电子束很困难。因此,冷阴极的场发射备受关注,但需要大的电场导致尖端表面的原子迁移,因此难以实现长时间稳定运行。碳纳米管可能为这些问题提供解决方案。事实上,碳纳米管在冷场发射方面具有许多优势:与金属和金刚石尖端相比,纳米管尖端的惰性和稳定性可以长时间运行;冷场发射的阈值电压低;工作温度低;响应时间快、功耗低、体积小。本章后面将讨论,利用纳米管优异场发射特性的原型设备已经得到展示。这些设备包括 X 射线管 [Sug01]、扫描 X 射线源 [Zha05]、平板显示器 [Cho99b] 和灯 [Cro04]。在详细介绍场发射之前,我们先介绍一下早期的实验工作,这些工作确立了碳纳米管在场发射方面的前景 [Hee95]。图 6.1 显示了测量碳纳米管薄膜场发射的实验装置。其中,碳纳米管薄膜(纳米管垂直于基底)用作电子发射器。铜网格位于纳米管薄膜上方 20 微米处,由云母片隔开。在铜网格和纳米管薄膜之间施加电压会产生一束电子,该电子束穿过铜网格,并在距离铜网格 1 厘米的电极处被检测到。 (需要注意的是,这些实验是在高真空条件下进行的,场发射装置位于真空室中,残余压力为 10 -6 托。)图 6.1 显示了这种装置的电流与电压曲线,表明正向偏置方向的电流大幅增加(发射类似于二极管:对于负电压,电流非常小)。为了验证光束确实由电子组成,光束在磁场中偏转,偏转对应于具有自由电子质量的粒子的偏转。该图的插图显示了 ( ) 2 log / IV vs 1 V − 的图,即所谓的 Fowler-Nordheim 图(更多信息请参见