1 简介 激光诱导击穿光谱 (LIBS) 可确定目标样品中存在的原子元素。使用激光脉冲蒸发目标的小样本(通常小于一微克),以产生电离原子和自由电子的等离子体。当该等离子体冷却并且自由电子与离子重新结合时,会发射出各种谱线。这些谱线的波长和强度可识别原始目标中的原子元素。此外,还可以推断出目标中存在的这些元素的百分比。通过计算机分析发射的谱线,可以在几分之一秒内完成测量。几乎不需要或根本不需要样品制备。目标可以是任何吸收所选激光波长的材料:固体、液体或气体。LIBS 被认为源于 Brech 和 Cross 的论文。1 LIBS 发展到目前的状态现已得到充分证明。2 – 4 这种简单、快速且多功能的技术广泛应用于实验室和现场现场测量。后者受到激光和光谱仪技术的进步的推动,这些进步带来了紧凑、便携的 LIBS 系统。5 – 7 LIBS 的应用现在涵盖了物理和生命科学的许多领域, 8 – 12 从深海测量 13、14 到火星。15 该技术可归为微破坏性技术(许多应用认为它是非破坏性的),其应用甚至扩展到珍贵艺术品,用于鉴定古代绘画作品和珍宝中的颜料,例如检查古钱币以确定其年代和真实性。16 – 19
摘要 - 在所有超导驱动器的几何形状中,螺旋开关器提供了非常紧凑的几何形状,并且进一步在产生同步辐射方面更有效,可提供循环极化的光子,该光子可用于合成子辐射使用者。这些特征使其成为实现更紧凑的自由电子激光器的一种非常有吸引力的选择,需要将短期和高效率的悬垂器组合起来,以产生连贯的光线至X射线。与低温超导体相比,要进一步增加4.2 K的磁场并获得更大的工作缘,研究了以涂层的稀有盐含量铜氧化物磁带的形式应用高温超导体(HTS)。This article presents the design and manufacturing work done on an HTS helical undulator prototype—the very first helical undulator design basedonHTStapewindingtothebestoftheauthors'knowledge.To provide proof of concept, a five-period short-model demonstrator wasrealizedbyabifilar,no-insulationwindingschemefromasingle piece of HTS cable, wound with a周期长度为13 mm,磁间隙为5 mm。在77 K处进行的首次供电测试,在液氮中进行,揭示了稳定的操作,直到计算出的140 A及以上的临界电流。高达160 A的较高电流显示了预期的线圈保护,使电流能够绕过正常导电区的出现并重新分发而不会降解超导体。
上下文。太阳系中气体巨头的内部模型传统上假设一个完全对流的分子氢包膜。,朱诺任务的最新观察结果表明,木星的分子氢包膜可能会耗尽碱金属的耗竭,这表明稳定的辐射层可能存在于千巴水平。最近的研究表明,深稳定的层有助于调和各种木星观测,包括其大气水和二线丰度以及其区域风的深度。但是,用于推断稳定层的不透明表通常被过时且不完整,从而使深辐射区域所需的精确分子氢包膜组成不确定。目标。在本文中,我们确定可以导致木星和土星在千巴尔水平的辐射区形成的大气组成。方法。我们计算了覆盖高达10 5 bar的压力,包括太阳系气体巨头中最丰富的分子以及自由电子,金属氢化物,氧化物和原子质物种的贡献,其中包括最丰富的分子。这些表用于计算木星和土星分子氢化膜的罗斯兰均值不透明,然后将其与维持对流所需的关键平均不透明度进行了比较。结果。我们发现,辐射区的存在是由木星和土星大气中的K,Na和Nah的存在控制的。相比之下,对于土星,K和Na所需的丰度低于10-4倍太阳能。对于木星,K和Na的元素丰度必须小于10 - 3倍太阳能才能形成辐射区。
hm的定律,历史上有1个对电路至关重要的第一个数学关系,指出通过宏观材料的当前I与所施加的偏置电压V成正比。这是通过经验测量值的经验测量来支持的,这些电流和长度尺度在许多数量级上有所不同,并且绝大多数材料都具有。考虑到由于原子或离子在经典力学框架内的快速散射而导致的电子曲折运动中施加的电场引起的加速度,Drude Model 2成功地揭开了净电子漂移,平均速度与现场成比例,并因此是ohm ohm的第一个微观依据。在自由电子模型中考虑了费米统计数据,Sommerfeld 3能够对金属中的欧姆定律提供第一个量子机械依据。固体的量子理论将各种宏观固体的欧姆电导率与表征特定能带结构表征的带隙的(非)存在之间的差异。4取决于频带隙的存在和/或线性库比波响应理论5,6明确考虑实际带结构的明确考虑允许估计欧姆(也称为零偏置或线性电导率)g并提供微观材料为什么某些材料为导电者,某些半径和某些胰岛素是某些材料,某些材料是某些半径和某些岛化的。在1920年代,在量子力学的前夕,人们对欧姆定律产生了重新兴趣,欧姆定律被认为在原子量表上失败了。7电子在短距离上的运动是连贯的,与宏观材料中发生的不一致的电子碰撞形成了鲜明的对比,从而引起焦耳
1832年,卡尔·冯·克劳塞维茨(Carl von Clausewitz)[22]写道:“战争是政治的延伸。”历史上,战争爆发时,当团体无法在政治上解决自己的冲突。因此,每个小组都必须准备捍卫自己免受合理的未来威胁。激光技术是防御现代武器的理想选择,因为激光梁可以在微秒内投射到超过公里的能量,足以消除大多数对策响应。本书仅包含未经类似或解密的信息,并着重于涉及大气传播的军事应用。第1-6章提供有关光学技术的背景材料。第7-11章描述了激光技术,包括有效的超高功率激光器,例如自由电子激光器,将对未来的战争产生重大影响。第12-17章展示了激光技术如何有效地减轻21世纪最紧迫的军事威胁。这包括使用激光来防止导弹,未来的核武器,定向梁武器,化学和生物攻击以及恐怖分子,并克服恶劣天气条件下的成像困难。了解这些威胁及其相关的激光保护系统对于明智地分配资源至关重要,因为在维持强大的经济,有效的基础设施和有能力的军事辩护之间需要保持平衡。强有力的防御能力阻止攻击者,从长远来看,比其他选择更具成本效益。我相信激光技术将在21世纪彻底改变战争。
粒子物理学和超导性紧密相连。由超导电缆制成的磁铁,尤其是由铌钛制成的磁铁,可使高能束流在对撞机中循环,并为粒子探测器提供更强的磁场。LHC 是有史以来最大的超导机器,而它的两个探测器包含规模空前的超导磁体,使希格斯玻色子在五年前被发现。对更高性能机器的需求,例如 LHC 光度升级和未来的圆形对撞机,需要下一代导体,例如铌锡,而 CERN 正在朝着此类技术快速迈进。继 MRI 之后,粒子物理学是超导体公司的最大客户,而 ITER 聚变实验也对全球铌锡生产产生了巨大影响。超导磁体的发展离不开超导射频腔的快速发展,超导射频腔用于加速粒子束,这一点从 20 世纪 90 年代 LHC 前身 LEP 的升级,到如今欧洲 X 射线自由电子激光器和可能的线性对撞机的实现,都可见一斑。高温超导体有望实现性能飞跃,30 年前人们就发现了高温超导体,但至今仍是一个谜。欧洲核子研究中心 (CERN) 正在这一领域取得重要进展,并已启动培训下一代超导研究人员的计划。粒子物理学正与工业界一起帮助我们实现全部
粒子物理学和超导性紧密相连。由超导电缆制成的磁铁,尤其是由铌钛制成的磁铁,可使高能束流在对撞机中循环,并为粒子探测器提供更强的磁场。LHC 是有史以来最大的超导机器,而它的两个探测器包含规模空前的超导磁体,使希格斯玻色子在五年前被发现。对更高性能机器的需求,例如 LHC 光度升级和未来的圆形对撞机,需要下一代导体,例如铌锡,而 CERN 正在朝着此类技术快速迈进。继 MRI 之后,粒子物理学是超导体公司的最大客户,而 ITER 聚变实验也对全球铌锡生产产生了巨大影响。除了超导磁体之外,超导射频腔也得到了快速发展,用于加速粒子束——正如 20 世纪 90 年代 LHC 前身 LEP 的升级以及如今欧洲 X 射线自由电子激光器和可能的线性对撞机的实现所展示的那样。高温超导体有望实现性能飞跃,30 年前人们就发现了高温超导体,但至今仍是一个谜。欧洲核子研究中心正在这一领域取得重要进展,并已启动培训下一代超导研究人员的计划。粒子物理学与工业界一起帮助我们实现全部
据我们所知,本手稿是第一个全面的多体光发射框架,其中包括相干的三体电子 - 光子 - photon-Phonon散射,以预测来自单晶光子座的体积光电子的跨性能分布和平均横向能量(MT)。需要开发这种理论的需求源于缺乏研究,这些研究提供了对管理从单晶发出的光电子横向动量分布的基本基本过程的完整理解。例如,基于密度功能性电子质量的密度官能理论计算的初始谓词表明,PBTE的(111)表面会产生非常小的MTE(≤15meV),而我们的实验产生的MTES比这些预测大十到二十倍,并且还表现出比较低的光学发射阈值比预测较低的预测。本手稿中介绍的AB从头算框架正确地从我们的PBTE(111)中的测量值和在预测阈值下方观察到的光学范围中从我们的测量中重现了MTE的大小。我们的结果表明,在大部分材料和相干的多体电子散射过程中,两种光兴奋的状态都在忽略的初始预测中,它们在PBTE的光发射中起着非常重要的作用(111)。最后,从所吸取的教训中,我们建议一项程序,以快速计算对下一代超快电动局部应用的潜在单晶光阴极和X射线自由电子激光器的应用,这将使在凝聚力问题研究中实现可显着的进步。
补充信息I.模拟耗竭光谱的程序。使用DFT计算单个光子横截面。图1所示的模拟耗竭光谱假设第一个光子的吸收是在IR-MPD过程中确定的速率。将计算出的光子吸收横截面与宽度为20 cm -1的高斯曲折,并根据以下方式转化为耗尽光谱,根据:σ(ν),计算出的单光子横截面在光子频率ν,p fel,p fel(ν)频率ν的自由电子激光器的输出功率。引入常数C以获得实验的最佳一致性。II。 在Turbomole封装中实现的BP86/TZVPP水平计算的计算的Ni N H 2 +簇结构和能量的结构和(相对)能量。 过渡状态和鞍点由TS和SP表示。 报道的能量包括零点振动能(ZPVE)。 字母“ u”表示未配对电子的数量。 坐标以原子单位给出。 物种结构能量(H)(含ZPVE)II。在Turbomole封装中实现的BP86/TZVPP水平计算的计算的Ni N H 2 +簇结构和能量的结构和(相对)能量。过渡状态和鞍点由TS和SP表示。报道的能量包括零点振动能(ZPVE)。字母“ u”表示未配对电子的数量。坐标以原子单位给出。物种结构能量(H)(含ZPVE)
在过去的十年中,X射线自由电子激光器(例如欧洲XFEL(Euxfel))都对其仪器提出了很高的要求。尤其是在低于1 KEV的低光子能量下,需要高灵敏度的检测器,因此需要低噪声和高量子效率,以使设施使用者能够充分利用光子源的科学电位。已安装并委托具有1024 1024像素格式的1百万像素PNCCD检测器,用于在Euxfel的小量子系统(SQS)仪器的纳米尺寸量子系统(NQS)站进行成像应用。该仪器目前在0.5至3 Kevand之间的能量范围内运行。NQS站设计,用于研究强烈的FEL脉冲与簇,纳米粒子和小型生物分子的相互作用,通过将照相离子和光电光谱与一致衍射成像技术结合在一起。成像检测器的核心是PN型电荷耦合器件(PNCCD),像素螺距为75 m m 75 m m。根据实验场景,PNCCD由于其非常低的电子噪声为3 e和高量子效率,因此可以对单个光子进行成像。在此概述了Euxfel PNCCD检测器以及2019年6月在SQS实验中的调试和第一次用户操作的结果。对探测器设计和功能的详细描述,在机械上和从控件方面的Euxfel实施以及重要的数据校正步骤旨在为用户提供有用的背景,以计划和分析Euxfel的实验,并可以作为比较其他费尔斯的终点站的基准。