在激光金属沉积 (LMD) 中,沉积轨道的高度会在层内和层间发生变化,从而导致工艺演变过程中出现显著偏差。先前的研究表明,在某些条件下会出现一种自稳定机制,保持高度有规律地增长,并保持零件和沉积喷嘴之间的恒定距离。在这里,我们分析了粉末收集效率和沉积高度稳定性之间的联系。为此,开发了一种监测系统来研究不同工艺条件下的沉积,使用在线测量样品重量并结合同轴光学三角测量获得的层高信息。使用分析模型根据高度监测和工艺参数实时估算沉积效率,并通过直接质量测量对其进行了验证。结果表明,轨道高度稳定与粉末收集效率降低有关,而粉末收集效率受熔池相对于粉末锥和激光束的相对位置控制。对于给定的一组参数,可以估算出间距以实现最高的粉末收集效率和通过构建方向的规则高度。
在激光金属沉积(LMD)中,沉积轨道的高度可能在层和层之间变化,从而在过程演化过程中导致显着偏差。以前的作品表明,在某些条件下,会发生自动化的机制,保持规律的高度生长和零件和沉积喷嘴之间的恒定站立距离。在这里,我们分析了粉末集水区效率和沉积高度稳定性之间的联系。为此,开发了一个监测系统,以研究不同过程条件下的沉积,使用样品重量与同轴光学三角调节获得的层高度信息结合使用。一种分析模型用于从高度监测和过程参数实时估计沉积效率,这是由直接质量测量结果验证的。结果表明,轨道高度稳定与粉末集水区效率的降低有关,该效率受熔体池相对于粉末锥和激光束的相对位置的控制。对于给定的一组参数,可以估计距离距离可以实现最高的粉末集水区效率和通过构建方向的常规高度。