HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
生物纳米孔对控制生物分子跨细胞脂质膜的进出口至关重要。它们在生物物理学和生物技术领域得到广泛应用,其通常较窄且固定的直径能够选择性地运输离子和小分子,以及用于测序应用的 DNA 和肽。然而,由于其通道尺寸较小,因此无法通过较大的大分子,例如治疗剂。在这里,利用 DNA 折纸纳米技术、机器启发设计和合成生物学的独特组合特性,提出一种结构可重构的 DNA 折纸 MechanoPore (MP),其管腔可通过分子触发器调整大小。通过 3D-DNA-PAINT 超分辨率成像和染料流入分析证实了 MP 在 3 个稳定状态之间的可控切换,这是通过反相乳液 cDICE 技术在脂质体膜中重建大型 MP 后实现的。跨膜运输的共聚焦成像显示了具有可调阈值的尺寸选择性行为。重要的是,构象变化是完全可逆的,证明了强大的机械切换可以克服来自周围脂质分子的压力。这些 MP 推动了纳米孔技术的发展,提供了可以根据需要进行调整的功能性纳米结构,从而影响了药物输送、生物分子分选和传感以及自下而上的合成生物学等多种领域。
在基于液晶弹性体 (LCE) 的刺激响应材料的潜在应用中,开发不受束缚的软致动器是最具吸引力的应用之一。[1–4] 例如,在软体机器人中[5–8] 以及在微流体和仿生设备中,[9,10] 含有光活性分子的光响应性 LCE 聚合物已得到广泛应用。[11,12] 与温度和湿度等其他刺激相比,光作为不受束缚的刺激物的好处是时空控制、可调性和直接应用。[13–15] 因此,开发基于可聚合 LCE 材料的光驱动致动器的努力已成为一个成熟的研究课题,为将光转化为机械运动奠定了宝贵的基础。 [16,17] 偶氮苯衍生物是目前 LCE 执行器中最突出的光开关,因为它们易于加入,并且能够实现快速、可逆响应的远程控制驱动。[18,19] 然而,通常需要液晶 (LC) 材料的光聚合才能获得可逆的形状变化。[20,21] 这种光诱导交联过程非常耗时,而且高效固化具有挑战性,而偶氮苯部分的不良异构化则进一步阻碍了这一过程。[22]