使用多个站按时间共享同一 VOR 通道来增加 VOR 覆盖范围的效果(地面复杂性增加,但提供空中复杂性和双 LOP)20 Omega LOP 和 VOR 组合的示例。 L9P 22 Omega LOP'S(斜平行)与 VKF 全向 LOP'S(单点径向)的组合 23 使用 VOR 链路与飞机传输 Omega 差分信号,提供以 VOR 站坐标为参考的组合径向平行斜网格 24 航向距离测量(机载航向输出) 28 航向距离测量(地面源输出) 29 航向 DME 与空中和地面输出 30 多个 VOR 站分时共享一个公共信道 32 一种地理分离和两个 VOR 信道分时共享的方法,提供来自多个地面站点的角度和距离功能 34 使用伺服存储器和/或 DC 存储器存储间歇性 VOR 方位 35 通用航空仪表进近仅使用航向道 38 可能整合 Omega 的按时间排序的位置报告地面显示、处理和向相邻位置的飞机发送近距信号的坐标 41 低成本通用航空机载单元的 VHP 专用补充执行的各种功能示例 43 系统集成示例,可降低通用航空电子复杂性和成本,同时提高功能价值 44 Bell 4 X 4 双音信号系统 47 使用两位双音系统的简化 VOR 编码 51 T
警告 主飞行控制面和主飞行控制飞行员输入:俯仰轴、滚转轴、偏航轴 标记信标通道 每个导航接收器频率选择 手动无线电传输键控和 CVR/FDR 同步参考 自动驾驶仪/自动油门/AFCS 模式和接合状态* 选定的气压设置*:飞行员、副驾驶 选定的高度(所有飞行员可选择的操作模式)* 选定的速度(所有飞行员可选择的操作模式)* 选定的马赫(所有飞行员可选择的操作模式)* 选定的垂直速度(所有飞行员可选择的操作模式)* 选定的航向(所有飞行员可选择的操作模式)* 选定的飞行路径(所有飞行员可选择的操作模式)*:航向/DSTRK、路径角 选定的决断高* EFIS 显示格式*:飞行员、副驾驶 多功能/发动机/警报显示格式* GPWS/TAWS/GCAS 状态*:选择地形显示模式,包括弹出显示状态、地形警报、注意和警告以及建议、开/关开关位置 低压警告*:液压压力、气压 — 计算机故障* 客舱失压* TCAS/ACAS(交通警报和防撞系统/机载防撞系统)* 结冰探测* 发动机警告每台发动机振动* 发动机警告每台发动机超温* — 发动机警告每台发动机油压低* 发动机警告每台发动机超速* 风切变警告* 操作失速保护、摇杆器和推杆启动* 所有驾驶舱飞行控制输入力*:驾驶盘、驾驶杆、方向舵踏板驾驶舱输入力 垂直偏差*:ILS 下滑道、MLS 仰角、GNSS 进近航道 水平偏差*:ILS 航向道、MLS 方位角、GNSS 进近航道 DME 1 和 2 距离* 主导航系统参考*:GNSS、INS、VOR/DME、MLS、Loran C、 ILS 制动器*:左右制动压力、左右制动踏板位置 日期* 事件标记* 平视显示器正在使用* 辅助视觉显示开启*
2009 年 2 月 25 日上午,TK1951,一架波音 737-800 被引导至航向道,在 AMS 2000 英尺处以 ILS 方式进近 18R 跑道,距离跑道入口不到 5.5 海里(海里)。这促使机组人员使用垂直速度模式从上方捕捉下滑道(这是必要的,因为在保持在 2000 英尺时需要近距离导航)。当时空中交通管制员的工作量不断增加,进近航段将在 TK1951 之后不久分割。副驾驶(F/O)是一名新聘用的 42 岁飞行员(拥有 4000 小时空军飞行经验),正在接受航线训练,担任飞行员飞行(PF)。已选择开启正确的自动驾驶仪(称为自动驾驶仪 B 或 CMD B),并且正确的飞行控制计算机(称为 FCC B)正在为其提供所有输入。当机组人员选择垂直速度模式并离开 2000 英尺时,737 的自动油门 (A/T) 减速至怠速,这与机组人员的期望(以及他们所知道的)他们对自动化的指令一致。接近新的襟翼设置时,飞机必须同时减速并下降,此时需要怠速功率。在接下来的 70 秒内,自动化系统的表现与机组人员的预期完全一致。然而,自动油门却以一种在这种情况下不正常的模式(所谓的减速闪光模式)自动且隐蔽地减速,但这是由于离开 2000 英尺后左侧雷达高度计 (RA) 和其他飞行参数的错误雷达高度读数触发的。驾驶舱内没有自动油门指示来唯一标记减速闪光模式。RA 异常没有报告给机组人员,驾驶舱内也没有故障标志、警告、灯光或任何其他直接通告。本质上,由于错误的雷达高度计输入,自动油门决定是时候降落了。它不再跟踪选定的速度,也不提供所谓的飞行包线保护。然而,自动驾驶仪仍然