本文件概述了安全评估期间可以使用的技术、方法、数据库或模型。这是一份动态文件。欢迎添加。请随意分享材料。如果正在使用该材料,请将其引用为: MHC Everdij 和 HAP Blom,安全方法数据库。版本 1.1,2016 年 8 月。由荷兰航空航天中心 NLR 维护。可在 http://www.nlr.nl/documents/flyers/SATdb.pdf 上获取 本文件包含三部分: 第 1 部分:安全方法概述 本部分从第 5 页开始,包含一个表格,列出了收集的所有安全方法,并为每种方法提供了以下信息(如果有): 方法名称,即首字母缩略词和名称。 格式,指定方法的一般格式,例如它是分步方法、数学模型还是各种技术的组合等。请参阅下表 1 了解定义的格式列表。 目的,指定方法的主要目的,例如,是否用于数据收集、硬件可靠性分析、人为可靠性分析等。请参阅下表 2 中定义的目的列表。 年份,即方法开发的年份。如果不确定,则添加“大约”或“或更早”等字眼。 方法的目标/描述。这个描述非常简短;有关更完整的描述,请参阅参考文献。 备注,例如相关方法的链接。 安全评估阶段,列出了 [SAP 15] 中提出的通用安全评估过程的各个阶段,在此期间可以使用该方法。这些阶段是:1) 确定评估范围;2) 学习标称操作;3) 识别危险;4) 将危险合并到风险框架中;5) 评估风险;6) 识别潜在的缓解措施以降低风险;7) 安全监控和验证;8) 从安全反馈中学习。 领域 ,即该方法所应用的领域,如核能、化学、ATM(空中交通管理)、铁路、医疗保健。请参阅下表 3 中定义的领域列表。带有下划线的领域的方法被发现是该领域独有的。对于括号(..)之间的领域,有迹象表明该方法适用于该领域,但尚未发现该方法已在该领域实际使用的证据。另请参阅表 4 了解解释。 应用 ,即该方法适用于硬件、软件、人员、程序或组织。 使用的参考文献。请注意,参考文献列表并不详尽。代码在第 3 部分中进行了解释。 第 2 部分:统计信息 本部分从第 223 页开始,收集了安全方法表中元素出现次数的一些统计信息,例如“航空”作为领域出现的次数,“识别危险”作为安全评估阶段出现的次数。 第 3 部分:参考文献 本部分从第 232 页开始,给出了所用参考文献的完整列表。
本文件概述了安全评估期间可以使用的技术、方法、数据库或模型。这是一份动态文件。欢迎添加。请随意分享材料。如果正在使用该材料,请将其引用为: MHC Everdij 和 HAP Blom,安全方法数据库。版本 1.1,2016 年 8 月。由荷兰航空航天中心 NLR 维护。可在 http://www.nlr.nl/documents/flyers/SATdb.pdf 上获取 本文件包含三部分: 第 1 部分:安全方法概述 本部分从第 5 页开始,包含一个表格,列出了收集的所有安全方法,并为每种方法提供了以下信息(如果有): 方法名称,即首字母缩略词和名称。 格式,指定方法的一般格式,例如它是分步方法、数学模型还是各种技术的组合等。请参阅下表 1 了解定义的格式列表。 目的,指定方法的主要目的,例如,是否用于数据收集、硬件可靠性分析、人为可靠性分析等。请参阅下表 2 中定义的目的列表。 年份,即方法开发的年份。如果不确定,则添加“大约”或“或更早”等字眼。 方法的目标/描述。这个描述非常简短;有关更完整的描述,请参阅参考文献。 备注,例如相关方法的链接。 安全评估阶段,列出了 [SAP 15] 中提出的通用安全评估过程的各个阶段,在此期间可以使用该方法。这些阶段是:1) 确定评估范围;2) 学习标称操作;3) 识别危险;4) 将危险合并到风险框架中;5) 评估风险;6) 识别潜在的缓解措施以降低风险;7) 安全监控和验证;8) 从安全反馈中学习。 领域 ,即该方法所应用的领域,如核能、化学、ATM(空中交通管理)、铁路、医疗保健。请参阅下表 3 中定义的领域列表。带有下划线的领域的方法被发现是该领域独有的。对于括号(..)之间的领域,有迹象表明该方法适用于该领域,但尚未发现该方法已在该领域实际使用的证据。另请参阅表 4 了解解释。 应用 ,即该方法适用于硬件、软件、人员、程序或组织。 使用的参考文献。请注意,参考文献列表并不详尽。代码在第 3 部分中进行了解释。 第 2 部分:统计信息 本部分从第 223 页开始,收集了安全方法表中元素出现次数的一些统计信息,例如“航空”作为领域出现的次数,“识别危险”作为安全评估阶段出现的次数。 第 3 部分:参考文献 本部分从第 232 页开始,给出了所用参考文献的完整列表。
本文件概述了安全评估期间可以使用的技术、方法、数据库或模型。这是一份动态文件。欢迎添加。请随意分享材料。如果正在使用该材料,请将其引用为: MHC Everdij 和 HAP Blom,安全方法数据库。版本 1.1,2016 年 8 月。由荷兰航空航天中心 NLR 维护。可在 http://www.nlr.nl/documents/flyers/SATdb.pdf 上获取 本文件包含三部分: 第 1 部分:安全方法概述 本部分从第 5 页开始,包含一个表格,列出了收集的所有安全方法,并为每种方法提供了以下信息(如果有): 方法名称,即首字母缩略词和名称。 格式,指定方法的一般格式,例如它是分步方法、数学模型还是各种技术的组合等。请参阅下表 1 了解定义的格式列表。 目的,指定方法的主要目的,例如,是否用于数据收集、硬件可靠性分析、人为可靠性分析等。请参阅下表 2 中定义的目的列表。 年份,即方法开发的年份。如果不确定,则添加“大约”或“或更早”等字眼。 方法的目标/描述。这个描述非常简短;有关更完整的描述,请参阅参考文献。 备注,例如相关方法的链接。 安全评估阶段,列出了 [SAP 15] 中提出的通用安全评估过程的各个阶段,在此期间可以使用该方法。这些阶段是:1) 确定评估范围;2) 学习标称操作;3) 识别危险;4) 将危险合并到风险框架中;5) 评估风险;6) 识别潜在的缓解措施以降低风险;7) 安全监控和验证;8) 从安全反馈中学习。 领域 ,即该方法所应用的领域,如核能、化学、ATM(空中交通管理)、铁路、医疗保健。请参阅下表 3 中定义的领域列表。带有下划线的领域的方法被发现是该领域独有的。对于括号(..)之间的领域,有迹象表明该方法适用于该领域,但尚未发现该方法已在该领域实际使用的证据。另请参阅表 4 了解解释。 应用 ,即该方法适用于硬件、软件、人员、程序或组织。 使用的参考文献。请注意,参考文献列表并不详尽。代码在第 3 部分中进行了解释。 第 2 部分:统计信息 本部分从第 223 页开始,收集了安全方法表中元素出现次数的一些统计信息,例如“航空”作为领域出现的次数,“识别危险”作为安全评估阶段出现的次数。 第 3 部分:参考文献 本部分从第 232 页开始,给出了所用参考文献的完整列表。
本文档概述了安全评估期间可以使用的技术、方法、数据库或模型。这是一份动态文档。欢迎添加。请随意分享材料。如果正在使用该材料,请将其称为: M.H.C.Everdij 和 H.A.P.Blom,安全方法数据库。版本 1.1,2016 年 8 月。由荷兰航空航天中心 NLR(荷兰)维护。可在 http://www.nlr.nl/documents/flyers/SATdb.pdf 获得 本文件由三部分组成: 第 1 部分:安全方法概述 本部分从第 5 页开始,包含一个表格,列出了收集到的所有安全方法,并为每种方法提供了以下信息(如果有): 方法名称,即首字母缩略词和名称。 格式,指定方法的一般格式,例如它是分步方法、数学模型还是各种技术的组合等。请参阅下表 1 中定义的格式列表。 目的,指定方法的主要目的,例如是否用于数据收集、硬件可靠性分析、人为可靠性分析等。请参阅下表 2,了解定义的目的列表。 年份,即方法开发的年份。如果不确定,则添加“大约”或“或更早”等字眼。 方法的目标/描述。这个描述非常简短;有关更完整的描述,请参阅参考资料。 备注,例如相关方法的链接。 安全评估阶段,列出了 [SAP 15] 中提出的通用安全评估过程的阶段,在此期间可以使用该方法。这些阶段是:1) 确定评估范围; 2)学习正常操作;3)识别危险;4)将危险纳入风险框架;5)评估风险;6)识别潜在的缓解措施以降低风险;7)安全监测和验证;8)从安全反馈中学习。 领域,即该方法的应用领域,例如核能、化学、ATM(空中交通管理)、铁路、医疗保健。请参阅下表 3 了解定义的领域列表。带有下划线的域的方法是该域独有的。对于括号(..)之间的域,有迹象表明该方法适用于该域,但尚未发现该方法已在该域中实际使用的证据。 应用,即另请参阅表 4 中的说明。是适用于硬件、软件、人员、程序或组织的方法。 使用的参考资料。请注意,参考资料列表并不详尽。代码在第 3 部分中进行了解释。第 2 部分:统计数据 本部分从第 223 页开始,收集了安全方法表中元素出现次数的一些统计数据,例如“航空”作为域的出现次数,“识别危险”作为安全评估阶段的出现次数。第 3 部分:参考资料 本部分从第 232 页开始,提供了使用的完整参考资料列表。
研究 灵活的模型环境及其复杂程度允许对复杂任务(如战术机动、外部负载操作或舰船甲板着陆)进行详细的飞行员在环稳定性和控制分析。内部专业知识和工具允许控制人为因素问题,如飞行员表现、飞行员工作量和团队合作。
n 铱星星座拥有的卫星数量超过任何其他商业星座。66 颗铱星卫星位于 485 英里(780 公里)高度的近极地轨道上。它们在六个轨道平面上编队飞行,每个轨道平面由 11 颗卫星组成,均匀分布在地球周围。每颗铱星卫星每 100 分钟绕地球一圈,速度为每小时 16,832 英里,从地平线到地平线穿越天空大约需要 10 分钟。
德国航天中心计划建造一颗地球同步通信卫星:德国希望通过以 19 世纪重要物理学家海因里希·赫兹命名的“海因里希·赫兹”卫星,展示其在卫星平台和有效载荷领域的国家实力。 “海因里希·赫兹”主要用于测试国家资助计划开发的技术。该卫星计划于2014年发射,在轨验证成功后将运行15年。该卫星项目为科研机构和工业界提供了开展各种实验的机会。这使得科学家和工程师在开发新通信技术和服务方面具有明显的优势。此外,“海因里希·赫兹”还为下一代通信卫星的空间技术的进一步发展做出了贡献。
DEMMIN – 使用建模和遥感数据演示生物量潜力评估的试验场 Erik Borg 博士 *) 、Holger Maass *) 、Edgar Zabel **) *) 德国航空航天中心 (DLR)、德国遥感数据中心 (DFD) **) 兴趣小组 Demmin Kalkhorstweg 53 D- 17235 Neustrelitz 与会议 2 相关 摘要:通过“全球环境和安全监测 (GMES)”倡议,欧盟 (EU) 和欧洲航天局 (ESA) 制定了一项雄心勃勃的计划,利用空间遥感技术以及其他数据源和监测系统为欧洲市场提供各种环境、经济和安全方面的创新服务。为了实现这一目标,必须实施自动化的实时和近实时基础设施,以便自动处理遥感数据。空间段和地面段的必要开发和实施已经在推进中。将开发用于获取增值产品的自动化处理链和处理器,特别是开发用于校准和验证遥感任务的测试站点。海报介绍了 DLR 测试站点 DEMMIN(持久环境多学科监测信息网络),它是校准和验证生物质和生物能源增值数据产品、区域规模生物质模型(如 BETHY/DLR)的先决条件,并展示了在实践中使用遥感数据和产品获取生物质潜力的可能性。考虑到这一背景,该演示文稿介绍了 DLR 的测试站点 DEMMIN,包括其特定的区域特征、现场测量仪器和现有数据库。测试站点 DEMMIN 是一个密集使用的农业区,位于德国东北部梅克伦堡-前波美拉尼亚州德明镇附近(距柏林以北约 180 公里)。自 1999 年以来,DLR 与 Demmin 利益集团 (IG Demmin) 一直保持着密切的合作。DEMMIN 的范围从北纬 54°2 ′ 54.29 ″、东经 12°52 ′ 17.98 ″ 到北纬 53°45 ′ 40.42 ″、东经 13°27 ′ 49.45 ″。IG Demmin 由 5 家农业有限责任公司组成,占地约 25,000 公顷农田。该地貌属于上一次更新世 (Pommersches stadium) 形成的北德低地。其特点是冰川河流沉积物和冰川湖沼沉积物以及反映在略微起伏的地貌中的冰碛。土壤基质以壤土和沙壤土为主,与纯沙斑或粘土区域交替出现。试验场的海拔高度约为 50 米,试验场东南部托伦塞河沿岸有一些坡度较大的山坡(12°)。年平均气温为 7.6 至 8.2°C。降水量约为 500 至 650 毫米。由于微地形,气候条件在局部范围内可能存在很大差异。该地区的田地面积很大,平均为 80 - 100 公顷。主要种植的作物是冬季作物,覆盖该地区近 60% 的田地。玉米、甜菜和土豆约占 13%。由于 DLR 与 IG Demmin 的合作,科学家们得到了农民的支持,并为他们的调查提供了重要信息。例如,数字准静态数据(如土壤图、地块图)或数字动态数据(如产量图和应用图)。除了数据库之外,DEMMIN 还实现了农业气象网络,它可以自动测量影响成像过程的所有农业气象参数,同时进行空间或机载遥感。
面对新的企业架构、市场变化、多样化的产品组合以及推动波音公司增长的责任,波音空间与通信公司 (S&C) 必须打造清晰一致的企业形象,与全球受众产生共鸣,这一点越来越重要。这些利益相关者包括必须拥有不断发展的品牌的员工、必须了解品牌的投资者和媒体,以及必须信任品牌的客户。实现全球品牌形象涉及许多挑战,包括让波音 S&C 脱颖而出,在一个主要将波音视为飞机制造商的世界中取得可持续的竞争优势。事实上,S&C 是世界上最大的航天公司,其市值达 100 亿美元,如果单独成立,就将成为财富 100 强公司,它负责将第一位宇航员送上月球;提供目前在轨运行的三颗卫星中的一颗;帮助整合国际空间站;并开创了数字影院,利用现有卫星将电影传送到影院。还有一个挑战是确保品牌支持公司的长期愿景:成为解决方案提供商,而不是硬件制造商。