航空航天环境是 RSESS 重点领域的核心课程,旨在向您介绍近地空间环境及其对航天器、通信系统、宇航员等的影响。从事空间技术或应用的航空航天工程师需要对环境有广泛的了解,以便适当地设计他们的航天器。但更一般地说,任何对太空充满热情的人都会对了解太空环境的不同区域、它们如何相互耦合和影响以及它们如何影响我们的日常生活感兴趣。我们将“近地”空间环境定义为受太阳影响的环绕地球的空间区域,也是我们大多数卫星运行的地方。因此,本课程重点介绍环绕地球的空间环境——不要指望了解太阳系、星系、行星际空间等。但是,我们将研究其他行星周围的环境,以便与地球进行比较,例如“近木星”空间环境。近地空间环境从地球表面一直延伸到弓形激波,弓形激波是磁层的外边界。在这个环境中,有不同的重叠区域:由中性分子和原子组成的大气层;电离层,大气中的气体被电离;等离子层,气体完全电离并被困在地球磁场中;以及辐射带,其中包含高能电子和质子。这些区域受到地球磁场的影响,而该磁场占主导地位的区域称为磁层。磁层内有不同种类的粒子、不同的电流以及各种复杂的等离子体和电磁波。此外,环境中还包含我们太阳系中的尘埃和流星体,以及我们直接负责的航天器和轨道碎片。在本课程中,我们将了解每个区域、它们存在的原因以及它们对航天器、宇航员和社会各个方面产生的积极和消极影响。它们对航天器和宇航员有电和辐射影响;对 GPS 和其他航天器的通信信号有影响;磁场扰动对地面有影响;尘埃和流星体对航天器有影响;等等。本课程分为多个模块,涵盖太空环境的每个区域,每个模块大约持续两周。在每个模块中,将阅读指定
(c) 除本条 (f) 款规定的情况外,涡轮转子完全失去负荷所导致的最高超速必须包括在本条 (b)(3)(i)、(b)(3)(ii) 和 (b)(4) 款考虑的超速条件中,无论该超速是由发动机内部故障还是发动机外部故障导致。在选择适用于每个转子的最严格超速条件时,必须考虑由任何其他单一故障导致的超速。还必须考虑由故障组合导致的超速,除非申请人能证明发生的可能性不大于极小(概率范围为每发动机飞行小时 10 −7 至 10 −9)。
空军系统司令部联络处设在渥太华,其职责之一是了解加拿大工业的最新能力和趋势,并向美国空军研发部门提供这些信息。本指南是为了实现这一目标而预先编写的。它提供了 184 家表示有兴趣与美国空军做生意的公司的描述性数据。所有信息均由各公司提供。引导新条目的是加拿大外交部。这是通过报纸、杂志以及与加拿大政府各部门的联系获得的。本指南介绍了加拿大航空航天工业的代表性横截面。 o 加拿大外交部出版的《面向全球市场的通信产品》。加拿大在航空航天、通信、电子和航天领域有着巨大的工业承诺。正如人们所预料的那样,这些行业主要集中在安大略-魁北克走廊,从温莎延伸到多伦多和渥太华,终止于蒙特利尔。其他具有不断扩大的工业基础的地区包括温尼伯(曼尼托巴省)、埃德蒙顿-卡尔加里(阿尔伯塔省)和温哥华(不列颠哥伦比亚省)地区。魁北克省和哈利法克斯(新斯科舍省)地区也为加拿大的工业能力做出了重大贡献。与本指南的其他版本一样,第四版没有
小时候,我在学校图书馆的每一本太空书中都读到过有关美国国家航空航天局 (NASA) 的内容。因此,我不断幻想着 NASA 的创新思维、先进技术、科学发现和发展……“如果有一天我能去那里参观,那该有多棒啊!”七岁的我着迷不已,睁大眼睛沉思着,对那些为 NASA 的伟大、进步和成功做出贡献的人们充满了无比的钦佩。小时候的我,只在最狂野的梦想中想象着,有一天,我能成为那些为 NASA 最重要的任务做出贡献的了不起的人之一,在非常聪明和善良的韩国导师的指导下,在 N-239 纳米技术中心进行实习。每个任务都旨在以某种独特的方式协助 NASA 实现目标。由于紫外线 (UV) 辐射是导致皮肤癌的主要原因,当宇航员在缺乏大气层保护他们免受这种有害辐射的行星上探索时,监测紫外线辐射暴露变得非常重要。因此,我参与了 NASA 太空制造 (ISM) 项目,该项目旨在提供传感器和设备的按需制造,以帮助宇航员执行探索任务。3D 打印技术允许在任何时间、任何地点制造电子元件。通过这种方式,我们正在努力开发完全可 3D 打印的柔性 ZnO 紫外线传感器,供宇航员佩戴在腕带或太阳镜上。这种 3D 打印技术有可能在国际空间站 (ISS) 和其他物流复杂且昂贵的星球上按需生产。加入 NASA 绝不是一个小小的胜利。这是我人生中这个关键时刻的一个重要垫脚石,因为职业选择对我的未来至关重要。我遇到了许多了不起、鼓舞人心的人,从和我同龄的学生到非常成熟和睿智的 NASA 科学家,他们不断鼓励我追求更高的学术目标和奖学金,以期未来在科学和技术领域的职业生涯。我非常幸运能够成为美国加利福尼亚州硅谷 NASA 艾姆斯研究中心实习项目的一部分。我很自豪能够代表特立尼达和多巴哥人民,我真诚地感谢那些支持我来到这里的人,让我有这样一个特别的机会与来自印度、葡萄牙、英国、新西兰等不同国家的其他人建立联系,其中包括中国和韩国等。
参数 尺寸 单位 质量 M 千克,kg 长度 L 米,m 时间 T 秒,s 温度 Ϫ 开尔文,K,摄氏度 速度 L/T 米/秒,m/s 密度 ML –3 千克/米 3 力 ML –1 T –2 牛顿,N = 1 千克·米/秒 2 压力 ML 2 T –2 N/米 2 ,帕斯卡,Pa 能量,功 ML 2 T –3 Nm,= 焦耳,J 功率 ML 2 T –3 J/s,瓦特,W 绝对粘度 ML –1 T –1 Ns/米 2 ,Pa-s 运动粘度 L 2 T –1 米 2 /s 热导率 MLT –3 Ϫ –1 W/mK,W/mo C
浏览报告后,您将在“您的体验”容器中发现 Experience² 趋势如何支持数字连续性,这是民用航空的事实标准。然后,您将进入“物联网经济”趋势,探索低地球轨道上的新卫星星座如何提供全新服务,以改善全球行业领导者或全球部署军队的供应链。我邀请您通过访问我们的应用创新交流空间之一来发现可用的相关演示。最后,为什么不了解北约如何展示“数据共享即关怀”趋势,以管理复杂的国际生态系统中的海量和多样性数据,从而改善协作、标准并提取数据价值呢?当然,这些趋势只是本报告中包含的 37 种趋势中的三种!
本报告总结了普渡大学工程与科学学院在为期四年的 AFOSR 大学研究计划期间进行的研究,该计划重点关注处理老化飞机的基本问题。该计划的协调目标分为四个主要类别:损伤发展、裂纹扩展和相互作用预测、故障预防技术和高级分析方法。损伤发展目标解决了腐蚀、疲劳裂纹形成 MI 和微动磨损的失效机制。裂纹扩展和相互作用任务的总体目标是开发预测服务引起的裂纹扩展的技术,并确定大面积开裂对损伤容限的影响。故障预防项目的主题是制定程序,通过延迟服务引起的损坏、修复有裂纹的结构以及采用机队跟踪方法对机队内的维护行动进行优先排序,从而延长“老旧”飞机的使用寿命。最后,研究旨在开发其他研究任务中使用的“高级”分析方法。这些项目涉及在各种材料评估和结构分析中添加统计成分,并制定与飞机材料和结构相关的延性断裂标准。
DOD-STD-100 工程制图规范 MIL-STD-109 质量保证术语和定义 MIL-STD-129 装运和储存标记 MIL-STD-130 美国军用财产识别标记 MIL-STD-209 军用装备的吊索和捆绑规定 MIL-STD-808 地面和地面支援设备的表面处理、防护和表面处理方案代码 MIL-STD-810 环境测试方法和工程指南 MIL-STD-831 测试报告、MIL-STD-970 标准和规范的准备、优先顺序、MIL-STD-1189 标准国防部条形码符号的选择 MIL-STD-1190 C 级保存、包装和标记的最低指导原则 MIL-STD-1367 系统和设备的包装、处理、储存和运输能力计划要求设备 MIL-STD-2073-2 包装要求代码 DOD-STD-2101 特性分类 MIL-STD-2175 铸件、分类和检查 MIL-STD-2219 航空航天应用的熔焊
在过去的几十年里,航天/航空航天飞行器的先进制导与控制 (G&C) 系统的设计受到了全世界的广泛关注,并将继续成为航空航天工业的主要关注点。毫不奇怪,由于存在各种模型不确定性和环境干扰,基于鲁棒和随机控制的方法在 G&C 系统设计中发挥了关键作用,并且已经成功构建了许多有效的算法来制导和操纵航天/航空航天飞行器的运动。除了这些面向稳定性理论的技术外,近年来,我们还看到一种日益增长的趋势,即设计基于优化理论和人工智能 (AI) 的航天/航空航天飞行器控制器,以满足对更好系统性能日益增长的需求。相关研究表明,这些新开发的策略可以从应用的角度带来许多好处,它们可以被视为驱动机载决策系统。本文系统地介绍了能够为航天/航空航天飞行器生成可靠制导和控制命令的最先进的算法。本文首先简要概述了航天/航空航天飞行器的制导和控制问题。随后,讨论了有关基于稳定性理论的 G&C 方法的大量学术著作。回顾并讨论了这些方法中固有的一些潜在问题和挑战。然后,概述了各种最近开发的基于优化理论的方法,这些方法能够产生最佳制导和控制命令,包括基于动态规划的方法、基于模型预测控制的方法和其他增强版本。还讨论了应用这些方法的关键方面,例如它们的主要优势和固有挑战。随后,特别关注最近探索 AI 技术在飞行器系统最佳控制方面的可能用途的尝试。讨论的重点说明了航天/航空航天飞行器控制问题如何从这些 AI 模型中受益。最后,总结了一些实际实施考虑因素以及一些未来的研究主题。
私营部门为印度航空航天和国防领域创造了 8000 亿卢比营业额的 20% 以上。在过去十年中,L&T、Tatas、Mahindras、Hindujas 和 Bharat Forge 等领先企业集团进行了重大投资,而 HAL、BEL、BEML 和 NAL 等公共企业和组织则继续通过新计划扩大业务规模,以满足政府在“自力更生的印度运动”和“印度制造”计划下的雄心勃勃的愿望。政府国防采购政策中的市场机会和补偿条款吸引了多家全球参与者在印度开展业务并成立合资企业。其中包括空中客车、BAE、波音、柯林斯航空航天、达索航空、以色列航空工业、皮拉图斯、洛克希德马丁、雷神、拉斐尔、赛峰和泰雷兹等领军企业。
