与其他 NASA 宇航员一样,现任陆军宇航员在俄罗斯联盟号飞船上接受训练并获得认证,并接受了在国际空间站执行任务的训练。这些任务包括:生物医学、硬件和技术实验;舱外活动或太空行走;国际空间站维护任务;以及强化俄语培训。此外,他们还进行公共事务宣传/参与,担任 NASA 载人航天计划和美国陆军的外交官。
摘要 美国国家航空航天局 (NASA) 已经开发出多种用于执行舱外活动 (EVA) 或太空行走的宇航服系统。这些宇航服系统包括阿波罗舱外机动装置 (EMU)、航天飞机和国际空间站 (ISS) EMU 以及探索 EMU (xEMU)。每个宇航服系统的功能都相同。但是,根据与任务目的相关的系统所注入的技术,每个宇航服系统的配置都不同。每个宇航服系统都由许多组件组成,而针对操作的集成环境会导致复杂的集成系统。自阿波罗以来,NASA 已投资了多种技术,这些技术以不同的版本构成了这些宇航服系统。阿波罗 EMU 设计于 20 世纪 60 年代,重点是帮助人类首次登上月球。航天飞机 EMU 设计于 20 世纪 70 年代,用于可重复使用的微重力操作,该操作始于 20 世纪 80 年代初。航天飞机 EMU 得到了增强,以方便在国际空间站上长期运行。在过去的 15 年里,NASA 一直在设计、开发和测试一种新的太空服系统 xEMU,它被认为是一个设计、验证和测试单元。NASA 计划让第一位女性和第一位有色人种登上月球。NASA 最近通过一项新的合同安排与业界合作,提供重返月球和继续在国际空间站运行所需的 EVA 服务。太空服系统很复杂。了解要求、操作环境、必要的技术和集成的太空服系统至关重要。此外,了解技术融合过程以满足任务目标也至关重要。本文将回顾 EVA 的太空服系统和太空服内的几个组件功能,以及从阿波罗到 xEMU 的这些技术的系统比较。关键词:美国国家航空航天局;NASA;太空服;舱外活动;舱外活动;太空行走;舱外机动装置;EMU;阿波罗;航天飞机;国际空间站;国际空间站
首字母缩略词 .cvs Excel codex ⁰ 度 < 小于 % 百分比 ABC Artemis 大本营 ACES 学院颜色编码系统 ANOVA 方差分析 CEL 概念探索实验室 cm 厘米 conops 作战概念 deg 度 DEM 数字环境模型 DOUG 动态机载无处不在的图形 DRATS 沙漠研究和技术研究 DSN 深空网络 DTE 直接对地 EDGE 探索图形 EHP 美国宇航局的舱外活动和人类地面机动计划 ESDMD 探索系统发展任务理事会 EVA 舱外活动 F ANOVA F 值 FOD 异物碎片 FOV 视场 fps 每秒帧数 GUNNS 通用节点网络求解器软件 HAB 栖息地 HDR 高数据速率 HITL 人在回路 hh:mm:ss 小时、分钟、秒 IES 照明工程学会 IMU 惯性测量单元 ISRU 现场资源利用单元 JEOD 约翰逊航天中心工程轨道动力学集团 JSC 约翰逊航天中心 kg 千克 km 公里 kph 公里每小时 千瓦 千瓦时 千瓦每小时 激光雷达 光增强探测与测距
“水下时间”仅受潜水员疲劳和任务时间压缩的限制;原本需要一周时间的维护任务(包括计算舱和水下时间)可以在一天内完成。Can-Dive 已经研究 Newtsuit 三年了,它仍处于研发阶段,但计划于今年进行高级操作试验。这一发展最终可能被证明是一个完整的循环 spinotaf,它从航空航天技术转移,并最终产生可转移到航空航天系统的技术进步。NASA 正在研究用于舱外活动的宇航服设计,因为
STS-49 徽章 STS049-S-001 -- 由机组人员设计的 STS-49 徽章体现了太空飞行的探索精神,这种精神起源于早期探索地球及其海洋未知区域的远洋船只。徽章上描绘的船只是 H.M.S.奋进号,詹姆斯库克船长首次前往南太平洋进行科学考察时指挥的帆船。就像库克船长在航行中进行了前所未有的探索壮举一样,在奋进号的首航中,机组人员将通过前所未有的会合和三次太空行走来拓展太空行动的视野。在连续三天的舱外活动期间,机组人员将进行一次太空行走,以回收、修复和部署 Intelsat IV-F3 通信卫星,并进行两次额外的舱外活动,以评估潜在的空间站自由组装概念。奋进号桅杆上高高飘扬的旗帜上印有两所学校的颜色,这两所学校在全国比赛中获胜,当时奋进号被选为 NASA 最新航天飞机的名称:塞纳托比亚(密西西比州)中学和塔卢拉瀑布(佐治亚州)学校。NASA 航天飞机飞行的徽章设计仅供宇航员使用,并供 NASA 局长授权的其他官方使用。各新闻媒体仅以插图形式批准向公众开放。如果这项政策有任何变化(我们预计不会发生),我们将公开宣布。图片来源:NASA 或美国国家航空航天局。
C. 地面通信 NASA 正在对月球表面网络的不同方法进行权衡研究,以选出最符合探索要求的实施方案。这些潜在方法包括: • 采用 NASA 的空间对空间通信系统(一种双向通信系统,旨在在航天飞机轨道器、国际空间站和舱外活动机动单元之间提供语音和遥测数据)以超高频率进行语音通信。 • 使用 Wi-Fi 进行近距离高速率视频通信。 • 利用地面无线蜂窝标准实现可扩展、更长距离、高吞吐量的 PNT 服务连接。 [8] 这样的网络可以增强
• 可靠的长期生命支持,具备独立于地球的诊断和维修功能(L、T、M) • 减少 20% 以上的备件和安装质量(T) • 实现单次任务 >800 天而无需补给(T) • 重复任务,休眠时间 >9 个月(L、T、M) • 2 毫米汞柱二氧化碳下氧气回收率 >75%(T) • 舱外活动高压氧气补给(L、M) • 水回收率 >98%(L、T、M) • 去除可吸入的月球和火星尘埃(L、M) • 行星保护兼容的 ECLSS 通风(M)
本文件中使用的首字母缩略词和缩写定义如下。 AC-10 Aerocube-10 ACCESS 可直立空间结构装配概念 ACME 带移动炮位增材制造 AFRL 空军研究实验室 AMF 增材制造设施 AMS Alpha 磁谱仪 ANGELS 本地空间自动导航和制导实验 ARMADAS 自动可重构任务自适应数字装配系统 CHAPEA 机组人员健康和表现模拟 CNC 计算机数控 DARPA 国防高级研究计划局 Dextre 特殊用途灵巧机械手 EASE 舱外活动结构组装实验 EBW 电子束焊接 EELV 改进型一次性运载火箭 ELSA-d Astroscale 演示报废服务 ESPA EELV 二级有效载荷适配器 ETS 工程测试卫星 EVA 舱外活动 EXPRESS 加快空间站实验处理 FARE 流体采集和补给实验 FDM 熔融沉积成型 FREND 前端机器人启用近期演示 GaLORE 从风化层电解中获取的气态月氧 GEO 地球静止轨道 GOLD 通用锁存装置 HST 哈勃太空望远镜 HTP 高强度过氧化物 ISA 空间组装 ISAM 空间维修、组装和制造 ISFR 现场制造和维修 ISM 空间制造 ISRU 现场资源利用 ISS 国际空间站 ISSI 智能空间系统接口 JEM 日本实验模块 JEM-RMS 日本实验模块遥控操作系统 LANCE 用于施工和挖掘的月球附着节点 LEO 低地球轨道 LH2 液氢 LINCS 本地智能网络协作系统 LOX 液氧 LSMS 轻型表面操纵系统 MAMBA 金属先进制造 机器人辅助组装 MER 火星探测探测器
在载人航天方面,这一年尤为引人注目。GEMINI 太空飞船由 TITAN I1 运载火箭送入轨道,美国在太空中的载人飞行时间超过了苏联航天器在其计划历史上以及 1965 年前美国航天器的飞行时间。除了这些长时间飞行外,这一年载人航天计划的亮点还包括舱外活动和两艘 GEMINI 飞船在太空会合。APOLLO 项目的进展令人鼓舞,表明这一重大成就将按计划完成。此外,1965 年,总统宣布决定继续开发、测试和飞行载人轨道实验室 (MOL),并将该项目的责任交给国防部。
技术开发团队的努力、工作状态以及长期技术开发重点和活动的总结。在过去的两年中,该团队专注于舱外机动装置 (xEMU) 的开发和详细设计,以支持两个并行任务:xEMU 国际空间站 (ISS) 演示配置的交付截止日期为 2023 年,以及支持 2024 年登月的行星行走服配置。将审查 xEMU 的基准设计。将介绍设计验证测试 (DVT) 的结果,并讨论其对硬件满足飞行要求的能力提供信心的能力。在可能的范围内,将提供对探索舱外活动服务 (xEVAS) 合同的影响评估。最后,将简要回顾长期压力服挑战和技术差距,以了解先进压力服团队的技术投资重点和未来探索任务的需求。