语音处理研究通常集中于“细微部分”,即“独特特征”、“音素”或“音素”如何构成语音识别和生成过程中必须识别和解码的元素(图 1a、b)。这种方法非常成功,构成了我们从声学、心理学、语言学和神经科学 1-3 以及最近的工程学角度理解语音的基础,自动语音识别系统在工程学中取得了显著成绩。构成元素(通俗地说,即“单词”的组成部分)在感知和生成以及词汇处理中的重要作用受到广泛重视和研究 4、5。在一项相对独立的研究中,人们开始强调语音的另一种属性——较慢的信号调制更具有“中间比特”或块的特征,即音节(图 1c)。与对基本声学语音特征的考虑(图 1b)相比,这种“语音的中尺度”受到的关注较少(图 1c)。最近令人惊讶的发现之一是,在这个时间尺度上量化的语音具有高度规律性的时间结构,这一属性很可能是大脑回路的组织和言语运动系统的生物力学的结果 6、7。识别系统也利用了这种时间、节奏的规律性。现在有越来越多的研究(从心理物理学到生理学到建模)建立在
摘要:在这项研究中,证实了脑电信号向量的新数学模型,该模型是在脑量表界面操作员多次重复的条件下注册的。研究信号的节奏比已知模型具有许多优势。这个新模型为研究多维分布函数开辟了道路。高阶的初始,中心和混合力矩功能,例如每个脑电图信号分别;以及它们各自兼容的概率特征,其中最有用的特征可以选择。这可以提高大脑 - 计算机界面操作员的心理控制影响(分类)的检测(分类)。基于开发的数学模型,证实了电位信号信号向量的统计处理方法,这些方法包括对其概率特征的统计评估,并有可能对电脑信号的概率特征进行有效的联合统计估计。这为来自不同传感器的信息协调整合提供了基础。在频域中使用高阶函数及其光谱图像作为大脑 - 计算机接口系统中的信息特征。在实验中确定了它们对脑计算机界面操作员的心理控制影响的显着敏感性。将贝塞尔的不平等应用程序应用于信息特征的矢量尺寸(从500次增加到20个数字)的问题,这可以显着降低算法的计算复杂性,以降低算法的计算复杂性。也就是说,我们在实验上确定,只有20个值的傅立叶估计值的傅立叶估算值的较高级别函数的傅立叶变换非常适合构成大脑计算机界面中信息效率的向量,因为这些频谱组成的统计量占相应的量化量的较高的统计量,这是相应的统计量的均可构图。信号。
4 方法 12 4.1 所用资源 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.3 播放节拍图 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 17 号
背景:为被诊断为心房颤动 (AF) 的患者确定合适的心律管理策略仍然是医疗服务提供者面临的主要挑战。尽管临床试验已经确定了可能需要采用心率或心律控制策略来改善预后的患者亚组,但患有 AF 的患者的表现和风险因素范围广泛,使这种方法具有挑战性。电子健康记录的优势在于能够建立逻辑来指导管理决策,这样系统就可以自动识别更有可能采用心律控制策略的患者,并可以有效地将患者转诊给专科医生。但是,与任何临床决策支持工具一样,可解释性和准确预测之间存在平衡。目标:本研究旨在通过比较不同的机器学习算法来创建一种基于电子健康记录的预测工具,以指导患者转诊给专科医生进行心律控制管理。
大脑的摘要节奏是由多个频率的神经振荡产生的。这些振荡可以分解为与特定生理过程相关的不同频率间隔。实际上,可解码频率间隔的数量和范围是通过抽样参数确定的,通常被研究人员忽略。为了改善情况,我们在开放的工具箱上报告了带有图形用户界面,用于解码大脑系统的节奏(Dream)。我们提供了梦想的示例,以研究神经(自发性大脑活动)和神经行为(扫描剂头部运动)振荡的特定于频率的性能。Dream解码了头部运动的振荡,并发现年幼的孩子在所有五个频率间隔中都比大孩子更多地移动头部,而男孩在7至9岁时移动的人数超过了女孩。有趣的是,较高的频带包含更多的头部运动,并且显示出更强的年龄相关性,但性运动相互作用较弱。使用来自人类Connectome项目的数据,Dream将这些神经振荡的幅度映射到了多个频段中,并评估了其重测的可靠性。静止状态的大脑将其自发振荡的振幅从空间上的振幅从腹侧颞区的高振幅排名到腹侧 - 枕骨区域的低位,而频带从低至高增加到高,而在壁和腹侧额叶区域的部分则相反。较高的频段表现出更可靠的振幅测量值,这意味着较高频段的振幅的个体间变异性更大。总而言之,Dream添加了一个可靠且有效的工具,可将人脑功能从多频窗口映射到脑波中。
a 美国田纳西州纳什维尔范德堡大学范德堡脑研究所 b 美国田纳西州纳什维尔 Curb 艺术、企业与公共政策中心 c 意大利都灵大学神经科学系 d 美国田纳西州纳什维尔范德堡大学医学中心耳鼻咽喉头颈外科系 e 美国纽约州纽约市长老会/哥伦比亚大学欧文医学中心和哥伦比亚大学瓦格洛斯内外科医学院耳鼻咽喉头颈外科系 f 美国纽约州纽约市长老会/威尔康奈尔医学中心耳鼻咽喉头颈外科系 g 荷兰马斯特里赫特大学神经心理学与精神药理学系 h 德国莱比锡马克斯普朗克人类认知与脑科学研究所神经心理学系 i听力和语言科学系,范德堡大学医学中心,田纳西州纳什维尔,美国 * 通讯作者,电子邮件:anna.v.kasdan@vanderbilt.edu 摘要 我们对 30 项研究神经典型成人音乐节奏处理的功能性磁共振成像研究进行了系统回顾和荟萃分析。首先,我们确定了一个音乐节奏的一般网络,涵盖所有相关的感觉和运动过程(基于节拍,静息基线,12 个对比),这揭示了一个涉及听觉和运动区域的大型网络。这个网络包括双侧颞上皮质、辅助运动区 (SMA)、壳核和小脑。其次,我们在双侧壳核中确定了更精确的基于节拍的音乐节奏位置(基于节拍,音频运动控制,8 个对比)。第三,我们确定了受基于节拍的节奏复杂性调节的区域(复杂性,16
Rhythmdrop是一个创新的平台,可以合并技术和创造力,以重新定义我们如何体验音乐。通过整合可穿戴技术和物联网(IoT),它将物理运动转变为动态的音乐作品。连接到鞋子的可穿戴设备捕获了用户的动作,使他们可以进行互动和沉浸式的音乐之旅,其动作直接影响了声音的发电。节奏的核心是基于运动是人类表达的基本方面的观念。使用加速度计和陀螺仪等传感器记录运动数据,使用户能够通过日常活动创建音乐。无论是跳舞,锻炼还是步行,每个运动都会有助于独特的音景,使音乐创作易于访问和愉悦。节奏通过鼓励体育锻炼和艺术自我表达来增强用户参与度。通过实时数据处理和低延迟通信,系统可确保音乐输出能够响应且适应用户的动作,从而促进运动和声音之间的无缝连接。这种技术的整合创造了一种个性化且不断发展的音乐体验,可适应个人创造力。超出其艺术潜力,节奏
自发同步语音揭示促进语言学习的神经机制。《自然神经科学》,22 (4),627–632。https://doi.org/10.1038/s41593-019-0353-z