- 细胞生物学技术(动态质量重新分布,Flex Station II,BRET钙动员测定法)。- DSRNA的合成用于RNA干扰和基因静音 - 质粒载体的构造,克隆过程以及在细菌和细胞系中重新组合的蛋白质的表达。•生物分子和细胞科学硕士学位(LM6)Ferrara大学,于2014年7月16日获得。参加国会和研讨会•2018年(7月)欧洲昆虫学大会(ECE 2018) - 那不勒斯(意大利)。贡献了三张海报:“斑点果蝇(果蝇果蝇)的章鱼胺/泰兰受体受体的克隆,分子表征和组织表达。” “开采基因在lobesia botrana(Denis和Schiffermüller)的脱氧基因抗性中的挖掘基因通过从头转录组组装和差异表达分析进行的。” “梨psylla cacopsylla pyri的垫子行为和双模式通信。” •2019年(7月)国际分子昆虫科学专题讨论会 - 西班牙(西班牙)。用两张海报做出的贡献:“山地植物可以调节苏木果果蝇(DSTAR1)中的1型酪氨酸受体:新型生物农药的分子和药理方面。” “来自棕色的臭臭虫Halyomorfha Halys的1型酪氨酸受体(TAR1):表征生物农药的新靶标。” •2019年(12月)欧洲博士网络“昆虫科学”,X年度会议 - 热那亚(意大利)。贡献“登革热载体中的章鱼和泰氨带受体,埃及埃及”的贡献。 •2022年(11月)美国昆虫学学会 - 温哥华(加拿大)。prothuto con una thra raale orale:“植物性昆虫卤素形halys的1型酪胺受体(TAR1)的分子表征和药理特征。” •2022(6月)昆虫生物技术会议 - 加拿大湖上的尼亚加拉。contruto con una restrazione orale:“泰拉米蛋白能信号通路参与调节chagas疾病矢量rohodnius prolixus中的卵产量”,监督di Studenti di Studenti di 8 tesi da corlelatore:
• ISO 16577 - “Molecular biomarker analysis — Terms and definitions” • ISO 20813 - “Molecular biomarker analysis — Methods of analysis for the detection and identification of animal species in foods and food products (nucleic acid-based methods) — General requirements and definitions” • ISO 21571 – “Foodstuffs — Methods of analysis for the detection of genetically modified organisms and derived products — Nucleic acid extraction” • ISO 24276 – “Foodstuffs — Methods of analysis for the detection of genetically modified organisms and derived products — General requirements and definitions” • ISO 20224 – “Molecular biomarker analysis Detection of animal-derived materials in foodstuffs and feedstuffs by real-time PCR” • CEN/TS17329-1:2019 - “Foodstuffs – General guidelines for the定性实时PCR方法的验证”•法典Alimentarius委员会文档CAC/GL 74-2010-“关于性能标准的指南以及对食物中特定DNA序列和特定蛋白质的检测,鉴定和量化的验证”•US-FDA文档的特定DNA序列和特定蛋白
•首先,可能会刺激现有肌纤维中的差异化CMS,以进入细胞周期,分裂和改革顶点。•第二,可以通过募集形成新的增生性CM的未分化的祖细胞来进行再生。•关于再生肌肉起源的第三个可能的机制是这两种称为“去分化”的机制的嵌合体,其中现有肌肉将下调收缩基因以创建未分化或不良分化的细胞。
描述:成人斑马鱼模型的神经行为和生理数据的数据库,通过为斑马鱼遗传信息提供了可用的存储库,通过提供动态的,开放的访问数据存储库,这些数据库是全面的,经过精心策划的Zebrafish Neurobafish Neurobobehavioral实验的结果收集的。截至2012年5月,它包含超过4500多个实验结果,来自75多种独特的生理和行为测试以及330种不同的药物治疗。ZNP结合了该领域发表的工作的经过验证和策划的数据,以提高对使用成人斑马鱼模型有兴趣的研究人员的当前知识的可访问性。总体而言,该计划将允许研究人员快速审查数据,并使用这些模型指导他们的研究。数据和协议提交现在正在接受。
Keap1 – Nrf2 通路是一种进化保守的机制,可保护细胞免受氧化应激和亲电试剂的侵害。在稳态条件下,Keap1 与 Nrf2 相互作用并导致其快速蛋白酶体降解,但当细胞暴露于氧化应激/亲电试剂时,Keap1 会感知它们,导致 Keap1 – Nrf2 相互作用不当和 Nrf2 稳定。因此,Keap1 被认为是 Nrf2 激活的“抑制剂”和“应激传感器”。有趣的是,鱼类和两栖动物有两种 Keap1(Keap1a 和 Keap1b),而哺乳动物、鸟类和爬行动物只有一种。系统发育分析表明,哺乳动物 Keap1 是鱼类 Keap1b 的直系同源物,而不是 Keap1a。在本研究中,我们使用斑马鱼遗传学研究了 Keap1a 和 Keap1b 之间的差异和相似之处。我们构建了 keap1a 和 keap1b 的斑马鱼基因敲除系。两种基因敲除系的纯合突变体均可存活且可育。在两种突变幼虫中,Nrf2 靶基因的基础表达和抗氧化活性均以 Nrf2 依赖的方式上调,表明 Keap1a 和 Keap1b 均可作为 Nrf2 抑制剂发挥作用。我们还分析了 Nrf2 激活剂萝卜硫素对这些突变体的影响,发现 keap1a- ,而非 keap1b- ,基因敲除幼虫对萝卜硫素有反应,表明两种 Keap1 的压力/化学感应能力不同。
现代计算增强了我们对社会相互作用如何塑造动物社会中集体行为的理解。尽管分析模型在研究集体行为方面占主导地位,但本研究介绍了一个深度学习模型,以评估鱼类杜鹃花的社交相互作用。我们将深度学习方法的结果与实验以及最先进的分析模型的结果进行了比较。为此,我们提出了一种系统的方法来评估集体运动模型的信仰,利用了一组严格的个人和集体时空可观察物。我们证明,社交互动的机器学习模型可以直接与他们的分析同行竞争,以复制微妙的实验可观察物。更重要的是,这项工作强调了在不同时间尺度上进行一致验证的必要性,并确定了关键的设计方面,使我们能够捕捉短期和长期动态的深度学习方法。我们还表明,我们的方法可以扩展到没有任何培训的情况下以及其他鱼类,同时保留了深度学习网络的相同结构。最后,我们讨论了在动物群体中集体运动研究的背景下,ML的附加值及其作为分析模型的补充方法的潜力。
在大约100个硬骨鱼珊瑚礁鱼家族中,有36个是众所周知,它们的鸡蛋在礁石上的矿物巢中产生,在那里它们被成年人育成(Shulman&Bermingham,1995年)。虽然在物种之间的孵化和幼虫的孵化能力差异很大,但在所有礁鱼中,嗅觉,听力和视力的感觉系统是最早在受肥后开始在胚胎中发育的器官之一(请参阅Myrberg&Fuiman 2002中的评论)。这可能是因为这些感觉必须在孵化时避开捕食者和饥饿的机会,必须达到一定程度的功能。但是,这些系统的早期开发也可能服务于其他功能。在某些动物中,在孵化过程中感觉到环境刺激的能力可能会构成在较旧的生活历史阶段有用的重要行为线索。例如,化学物质的印记
持续的气候变化已经与野生鱼类和养殖鱼类的疾病爆发增加有关。在这里,我们评估了当前关于气候变化相关的生态免疫学的知识,重点是探索多种压力源的交互作用,重点是临时,缺氧,盐度和酸化。我们的文献综述表明,温度和溶解氧的急性和慢性变化会损害鱼类免疫力,从而导致疾病易感性增加。此外,已经证明温度和缺氧可以增强某些病原体/寄生虫的感染并加速疾病进展。也很少有针对酸化的研究,但是直接的免疫作用似乎受到限制,而盐度研究导致了对比结果。同样,对于揭示同时改变环境因素的相互作用所必需的多压力实验仍然很少。这最终阻碍了我们估计气候变化在多大程度上会妨碍鱼类免疫力的能力。我们对表观遗传调节机制的评论突出了鱼类免疫反应对不断变化的环境的适应潜力。但是,由于表观遗传学研究数量有限,因此无法得出总体结论。最后,我们提供了如何更好地估计鱼类未来免疫研究的现实气候变化情景影响的前景。
本法院的政策是鼓励双方自行制定育儿计划,无论是在他们之间,还是在法律专业人士的帮助下或通过调解。法院通常会批准双方商定的任何育儿计划。标准育儿计划的目的是为未能就替代的、更灵活的计划达成一致的各方提供育儿计划。由于每个家庭的情况不同,法院可能会规定比本育儿计划中规定的更多或更少的育儿时间。儿童的最大利益是唯一的考虑因素。 , ) 申请人, ) 约瑟芬县 ) 替代 60-40 ) 育儿计划和, ) ) 案件编号:,) 被告。) 日期: