花粉粒的数量在物种内和物种间存在差异。然而,与雄蕊细胞分化方面的研究相比,人们对这一数量性状的分子基础知之甚少。最近,通过拟南芥的全基因组关联研究,分离出了第一个负责花粉数量变异的基因 REDUCED POLLEN NUMBER1 (RDP1),并表现出自然选择的特征。该基因编码酵母 Mrt4 (mRNA 转换 4) 的同源物,它是大核糖体亚基的组装因子。然而,没有进一步的数据将核糖体功能与花粉发育联系起来。在这里,我们使用标准 A. thaliana 登录号 Col-0 表征了 RDP1 基因。由 CRISPR/Cas9 产生的移码突变体 rdp1-3 揭示了 RDP1 在开花中的多效性作用,从而表明该基因是花粉发育以外的多种过程所必需的。我们发现,天然的 Col-0 等位基因导致 Bor-4 等位基因的花粉数量减少,这是通过定量互补测试评估的,该测试比转基因实验更敏感。结合通过序列比对确定的 Col-0 中的历史重组事件,这些结果表明 RDP1 的编码序列是导致自然表型变异的候选区域。为了阐明 RDP1 参与的生物学过程,我们进行了转录组分析。我们发现负责核糖体大亚基组装/生物合成的基因在差异调控基因中富集,这支持了 rdp1-3 突变体中核糖体生物合成受到干扰的假设。在花粉发育基因中,编码碱性螺旋-环-螺旋 (bHLH) 转录因子的三个关键基因(ABORTED MICROSPORES ( AMS )、bHLH010 和 bHLH089 )以及 AMS 的直接下游基因在 rdp1-3 突变体中下调。总之,我们的结果表明核糖体通过 RDP1 在花粉发育中发挥特殊功能,RDP1 含有受选择的天然变体。
可以使用授权的供应商指南来支持医疗必要性和其他覆盖范围确定。c Indiation formulary c超大:o Verview Grastek和Oralir是草花粉过敏蛋白提取物,用于过敏性鼻炎,有或没有结膜炎,已通过阳性皮肤测试或体外测试证实,用于花粉特异性免疫蛋白或交叉粉状的抗粉或交叉粉状(Eige)的抗酸性草(Eige)抗原(Eige)抗反应性(Eige),是远面的(ige)抗原(Eige)的草皮(Ei grand)。包含在产品(Oralair)中。1,2这些产品在5至65岁的患者中表明。每个产品标签,Grastek必须在每个草花粉季节的预期发作之前12周开始,并且必须在每个草花粉季节的预期发作前4个月开始Oralair。1,2必须在整个赛季中继续进行。临床功效
图3:Burdur Basin(Türkiye)的合成花粉图针对核心深度。a)选定的陆层花粉分类群,表示为总陆地花粉的百分比。AP:树木花粉。paz:花粉组合区。b)选定的杂化和水生花粉类群和NPP。水生花粉分类群以花粉的百分比表示。蕨类孢子,藻类和真菌以总陆地花粉和NPP的百分比表示。nppaz:非花粉palynomorph组合区。黑色矩形指示宏观木炭或木材的水平。黑色355
新闻稿 新加坡,2022 年 4 月 5 日 新加坡南洋理工大学科学家开发出一种可回收的花粉纸,可重复打印和“取消打印” 新加坡南洋理工大学 (NTU Singapore) 的科学家开发出了一种以花粉为基础的“纸”,在打印后可以“擦除”并重复使用多次,而不会损坏纸张。 在 4 月 5 日《先进材料》杂志在线发表的一篇研究论文中,新加坡南洋理工大学的科学家演示了如何使用激光打印机在非过敏性花粉纸上打印高分辨率彩色图像,然后使用碱性溶液“取消打印”——即在不损坏纸张的情况下完全去除碳粉(见下方编者注中的图片 1)。 他们证明这个过程可以重复至少八次。 这种创新的、可立即打印的花粉纸可以成为传统纸张的环保替代品,传统纸张经过多步骤工艺制成,对环境有显著的负面影响,由 Subra Suresh 和 Cho Nam-Joon 教授领导的 NTU 团队表示。它还可以帮助减少与传统纸张回收相关的碳排放和能源使用,这涉及再制浆、脱色(去除打印机墨粉)和重建。 这个全 NTU 研究团队的其他成员包括研究员 Ze Zhao 博士、研究生 Jingyu Deng 和 Hyunhyuk Tae 以及前研究生 Mohammed Shahrudin Ibrahim。 NTU 校长兼该论文的资深作者 Subra Suresh 教授说:“通过这项研究,我们展示了我们可以在由天然植物材料制成的纸张上打印高分辨率彩色图像,这种材料通过我们最近开发的一种工艺变得不致敏。 我们进一步证明了在不破坏纸张的情况下反复这样做的可行性,使这种材料成为传统木质纸张的可行环保替代品。 这是一种纸张回收的新方法——不仅以更可持续的方式造纸,而且还通过
Honeybees用蜂面包而不是蜂蜜和花粉来营养。因为花蜜和花粉在被蜜蜂食用之前都经历了一些生化变化。虽然蜜蜂带入蜂巢的花粉被填充到蜂窝细胞中,但蜜蜂分泌物中的蜂蜜,有机酸和消化酶被添加到花粉中(Deveza等人。2015)。然后,由细菌引起的乳酸发酵发生在厌氧条件下。发酵的一个重要原因是花粉的外层(外部)溶解以及花粉内部营养素的易于吸收。因此,发酵过程不仅用于保留花粉含量,还可以形成新的化合物。在发酵过程中,蜜蜂花粉蛋白被分解为肽和氨基酸。degrandi -Hoffman(2013)报告说,花粉的蛋白质浓度高于蜂面包,而氨基酸浓度较低。在另一项研究中,发现蜜蜂面包中的乳酸浓度比花粉高6倍(Nagai等人。2005)。 还报道说,蜜蜂面包中含有维生素K,在新鲜花粉中未发现,在B族维生素中更丰富(Gilliam 1979a,b)。2005)。还报道说,蜜蜂面包中含有维生素K,在新鲜花粉中未发现,在B族维生素中更丰富(Gilliam 1979a,b)。
机载花粉是全球最重要的空气过敏剂。由于气候变化,花粉季节性和丰度正在发生重大改变,这引起了基本问题:花粉暴露何时和多少增加?为了回答这个问题,我们采用了多分辨率的研究设计,从大约每年到年度规模,研究了空中花粉的多样性,丰度和时间出现。使用7天记录的Hirst型体积陷阱,在2015年至2017年期间进行了空气传播的花粉浓度。监控是在地面上进行的,我们主要是上下班和居住的地方,在“金标准”屋顶级别(地面高12 m),分辨率:a)每天bi-hourly,b)。评估了所有分类单元的生物多样性和相对丰度,并开发了第一个花粉季节日历以及昼夜节律日历,用于德国奥格斯堡。确定了40多种花粉类型,其中13种是最丰富的(每个相对丰度> 0.5%,总计91.8%)。生物多样性在高度之间没有任何明显的差异,尿布科,槟榔和豆豆的花粉代表了始终超过一半的区域大气生物多样性。在屋顶级别的花粉丰度通常看起来更高,尤其是对于betula,picea和quercus。主要的花粉季节从3月至10月延长,最高峰将于4月至5月。在屋顶级别,大多数分类单元的花粉季节都早些时候,整个季节更长。时花粉在一天中,在中午至下午观察到较高的花粉浓度(荨麻教,肺科,plantago,大多数是地面上的分类单元)或傍晚到清晨,经常使用多模式的昼夜模式(betula,fraxinus,fraxinus,fraxinus,大多数是屋顶级别的分类)。我们的发现表明,应深入重新考虑地面和“金标准”屋顶级花粉测量之间的丰度和时间分布模式的概括。
a)花粉颗粒由2个层次的壁,硬外部外部组成: - 由孢子囊素组成,孢子囊是已知的最具耐药性有机物之一。它可以承受高温和强酸/碱。没有酶可以降解它。因此,在化石内部的化石内部,花粉颗粒被充分保存:由纤维素和果胶菌毛孔制成:不存在小孢子蛋白的外部的孔。花粉管通过孔出来。质膜围绕花粉颗粒的细胞质。成熟的花粉由2个具有核(营养和生成剂)的细胞组成。营养细胞:较大,丰富的食物储备,负责花粉谷物的发展,会产生花粉管。生成细胞:它很小,漂浮在营养细胞的细胞质中。纺锤体形状,具有致密的细胞质和一个核,其分裂以产生两个雄配子。花粉粒可能在脱落时具有2个细胞(一个营养细胞和生成细胞)或3个细胞(一个营养细胞和2个雄配子)。花粉过敏:parthenium(胡萝卜草)的花粉会引起慢性呼吸系统疾病,例如哮喘,支气管炎(1M)
空气中的颗粒物数据对于保护人类健康至关重要。人为(例如烟尘、轮胎和刹车磨损)以及生物(例如花粉和孢子)颗粒通常由位于城市环境中的主动采样器监测;因此,偏远山区的数据非常少。此外,生物气溶胶分析耗时且需要大量技能。因此,为了避免主动采样的障碍(即高成本和功耗)并简化数据分析,我们研究了结合自动分析的被动采样作为花粉检测方法。2018 年,我们在意大利圣米歇尔阿迪杰部署了两台 Sigma-2 被动采样器,为期 12 周。自 1990 年以来,这里一直使用 Hirst 型容积采样器监测空气中的花粉。为了获得单个粒子的形态化学信息,我们使用 (i) 自动光学显微镜 (OM) 分析了样品,然后根据粒度和灰度值进行图像分析,以及 (ii) 自动扫描电子显微镜结合能量色散 X 射线光谱 (SEM/EDX)。自动 OM 检测到尺寸范围为 20–80 µ m 的明亮颗粒(即来自天然来源),准确代表了总花粉,SEM/EDX 根据大小、形状和化学成分过滤颗粒,这使我们能够识别可能的花粉候选物(“花粉状”部分)。总体而言,自动化分析技术可以同时提供有关空气中人为、地质和生物颗粒(包括花粉)的数据。此外,被动采样为收集空气生物学研究中的数据提供了一种可靠的选择,特别是在维护主动采样器具有挑战性的偏远地区。关键词:空气生物学、Sigma-2 采样器、Hirst 型采样器、空气中颗粒、SEM/EDX
花:植物的生殖部分。雄蕊:花粉产生花的生殖器官。二声:花药中的每个叶中的两个theca。花粉囊:在其中产生花粉的微型孢子虫:最内向的微孢子虫滋养发育中的花粉晶粒。孢子组织:在微孢子囊中心的紧凑型均匀细胞,经历减数分裂(微孢子形成),形成小孢子的四四形小孢子:雄性配子 /花粉颗粒。孢子囊素:存在于花粉颗粒的最外层,高度抗性蛋白。胚芽孔:花粉谷物中的孔,促进气体和水的交换,有助于新出现的花粉管。自动木材:当授粉发生在同一植物的同一朵花之间时。鸡蛋设备:由协同和肌形设备组成,有助于将花粉管进入胚胎囊中。Synergid:存在于胚胎囊中,数量为两个。Filliform设备:存在于同性恋中,引导花粉管进入胚囊。Megaspore:MMC减数分裂划分后形成了四个Megaspore。单孢子的发展:四个中的巨型仓中有一个胚芽发展成胚囊。geitnogamy:将花粉颗粒从花药转移到同一植物的另一花朵的污名。异凝膜:将花粉颗粒从花药转移到不同植物的污名。三重融合:男配子与两个极性核形成三层核的融合。胚胎发育:胚胎的形成。子叶:含种子植物中的胚胎叶。Scutellum:单子叶植物的子叶。休眠:无效状态。parthenocarpy:没有受精的果实的发展。例如 - 香蕉,橙色。polyembryony:在种子中出现多个胚胎。例如 - 柠檬。
1 环境医学,奥格斯堡大学医学院,86156 奥格斯堡,德国;maria.plaza@tum.de (M.P.P.); franziska.kolek@tum.de (F.K.); vivien.leier-wirtz@tum.de (V.L.-W.); claudia.traidl-hoffmann@tum.de (C.T.-H.) 2 环境医学研究所,慕尼黑亥姆霍兹中心——德国环境健康研究中心,86156 奥格斯堡,德国 3 医疗保健运营/健康信息管理,奥格斯堡大学医学院商业与经济学院,86159 奥格斯堡,德国; jens.brunner@uni-a.de 4 Christine Kühne—过敏研究与教育中心 (CK-CARE),7265 达沃斯,瑞士 5 塞萨洛尼基亚里士多德大学科学学院生物学院生态学系,54124 塞萨洛尼基,希腊 * 通讯地址:dthanos@bio.auth.gr