,可以说是生产接近工程塑料性能的材料的最佳可持续单体之一。19 - 21,由于固定的刚性双环ste-旋转和同层的合成多功能性,其作为与已建立的双氟环烷基芳族苯乙烯(TFVE)单体共聚合的反应性,可产生半氟化的芳烯烯丙基乙烯乙烯乙烯(Fienylene vinylene Ethere)Polymers(Faive)。尽管通常使用双酚来生产最喜欢的聚合物,但已经报道了一些使用原发性脂肪族二醇的例子。22 - 25然而,没有以前的报道曾尝试使用二次或环状脂肪族二醇产生氟芳基芳基乙烯基醚(FAVE)聚体。在此,我们报告了与BIS -TFVE单体的商业异糖层的平均,无金属且有效的台阶增长聚合,以生成含有明显(23 - 31 wt。%)可再生且潜在可生物降解含量的最爱的聚合物。这种类型的半氟化物可以在涂料,光学膜和气体分离技术中找到应用。
* 通讯作者 三维 (3D) 培养方法的进步已导致类器官的产生,这些类器官重现了人类神经系统各个领域的细胞和生理特征。尽管已经开发出微电极用于与神经组织建立长期电生理接口,但对微电极和自由漂浮类器官之间长期接口的研究仍然有限。在本研究中,我们报告了一种可拉伸的柔软网状电极系统,该系统在 3D 类器官中建立了与人类神经元的密切体外电接口。我们的网状电极由基于聚(3,4-乙烯二氧噻吩)聚苯乙烯磺酸盐 (PEDOT:PSS) 的导电水凝胶电极阵列和弹性体聚(苯乙烯-乙烯-丁二烯-苯乙烯) (SEBS) 作为基材和封装材料构成。这种网状电极可以在 50% 压缩应变和 50% 拉伸应变下的缓冲溶液中保持稳定的电化学阻抗。我们已成功在这种聚合物网上培养了多能干细胞衍生的人类皮质类器官 (hCO) 超过 3 个月,并证明类器官很容易与网状物整合。通过同时进行刺激和钙成像,我们表明通过网状电刺激可以引发强度依赖性钙信号,与双极立体电极的刺激相当。该平台可用作监测和调节神经精神疾病体外模型电活动的工具。简介网状电极是一种新兴的脑组织慢性电生理接口平台 1,2 。与由硅等硬质材料制成的传统多电极阵列或柄探针不同,网状电极由柔性导电互连线和绝缘聚合物材料封装的电极组成。由于多种原因,网状电极已被证明能够实现稳定的长期接口。首先是它们的弯曲刚度低:通过具有薄层,它们可能更容易与神经组织贴合,从而最大程度地减少异物相互作用 3 。其次,网状电极排除的体积远小于其他技术(例如实心电极插入物)。网状电极可以做得小于 1 微米,并且已被证明在注入液体溶液后会膨胀和扭开 4,5 。网状电极的一个潜在应用领域是刺激和监测 3D 神经类器官中电活动的出现。神经类器官最初是人类诱导多能干细胞 (hiPSC) 的 3D 聚集体。随着时间的推移,hiPSC 衍生的分化细胞自组织成 3D 结构,重现发育神经轴域的某些方面 6 。这些类器官或它们的组合形成组装体,可用于研究早期
主要产品:涂料和油墨添加剂:Texanol™、Optifilm™、酮、酯、乙二醇醚、醇溶剂、EastaPure™、纤维素、聚酯、聚烯烃基聚合物和 Tetrashield™ 保护性树脂体系胶粘剂树脂:碳氢化合物树脂(Piccotac™、Regalite™、Eastotac™、Eastoflex™、Aerafin™)轮胎添加剂:Crystex™ 不溶性硫磺、Santoflex™ 抗降解剂和 Impera™ 高性能树脂护理化学品:烷基胺衍生物、有机酸及衍生物、纤维素酯、Banguard™ 杀菌剂特种液体:Eastman Therminol™ 传热流体、Skydrol™、涡轮机油、SkyKleen™、Marlotherm™动物营养:有机酸及衍生物、有机酸基溶液、氯化胆碱、Eastman Enhanz™ 主要市场与应用: 运输:橡胶轮胎制造中使用的不溶性硫、抗降解剂和高性能树脂、OEM 和修补涂料中使用的聚合物和溶剂、航空液体 消耗品:卫生和包装胶粘剂中使用的树脂、涂料添加剂以及图形艺术和油墨中使用的聚合物 建筑:建筑涂料中使用的溶剂、建筑胶粘剂和室内地板用树脂 食品、饲料与农业:土壤熏蒸剂、动物饲料的肠道健康、防腐、杀菌剂和植物生长调节剂 工业化学品与加工:化学过程和可再生能源的传热流体 能源、燃料与水:水处理用的烷基胺衍生物 消费/医疗耐用品:涂料、木材和工业应用中使用的聚合物和溶剂 个人护理/健康与保健:个人护理应用和水处理中使用的胺基中间体 主要原材料:醇、烷基胺、氨、苯胺、甲基苯乙烯、苯、C9 树脂油、CS2 烧碱、环氧乙烷、甲酸、松香、重质燃料油、甲基异丁基酮、环烷工艺油、新多元醇酯、硝基苯、戊二烯、磷、丙烷、丙烯、硫、苯乙烯、木浆 主要竞争对手: 涂料和油墨 添加剂:巴斯夫欧洲公司、陶氏公司、Oxea、塞拉尼斯公司 粘合剂树脂:埃克森美孚公司、可隆工业公司、赢创工业公司 轮胎添加剂:东方炭素化学株式会社、四国化成株式会社 护理化学品:巴斯夫欧洲公司、陶氏公司、亨斯迈公司、科迪华公司、Agro-Kanesho 株式会社、拜耳 特种液体:陶氏公司、埃克森美孚公司 动物营养:巴斯夫欧洲公司、Perstorp Holding AB、鲁西化工集团、肥城酸性化学品
IAC 2023 上展示了有关固体和混合推进系统的新概念和突破的各种实验和数值研究。阿联酋技术创新学院展示了利用火星和月球上现有的材料,用于混合火箭推进的原位推进剂生产的可能组合。巴西航空技术学院展示的反应分子动力学模拟结果揭示了铝颗粒钝化过程的根本机制,表明更好地理解这一机制可以确保固体推进剂中铝基部件的长期稳定性和性能。中国科学院空间研究所展示了一种具有推力矢量能力的透气喷嘴的概念设计。法国 ISAE-SUPAERO 展示了学生开发的使用 H 2 O 2 和 3D 打印 ABS(丙烯腈丁二烯苯乙烯)的混合火箭发动机的设计和测试结果。 Alpha Impulsion(法国)展示了一种非常原创的自噬混合火箭发动机的开发,重新审视了液体/粉末推进剂和结构塑料推进剂的各种组合的旧概念。华沙理工大学(波兰)展示了 Twardowsky 发动机测试活动的结果,从而使学生混合火箭发动机获得了飞行资格。
摘要:从自然环境中分离新的细菌菌株可以检测出具有潜在实际意义的微生物。可以使用经典的微生物学和分子生物学方法来表征此类微生物。目前,对新发现的微生物的研究基于测序技术。全基因组测序可以提供有关菌株来源、分类地位和表型特征的信息。这项研究是使用从玉米作物根际分离的细菌无色杆菌属 77Bb1 进行的。使用 Illumina 2 × 150 nt 技术对细菌基因组进行测序。使用生物信息学方法分析获得的序列,得到 57 个重叠群和包含 6,651,432 nt 的基因组。基于 16S rRNA 基因序列的系统发育分析使所分析的细菌能够归属为无色杆菌属。获得的基因组包含 4855 种具有功能分配的蛋白质基因。其中一些基因与外来生物的生物降解和代谢有关。在分析的基因组中发现了所有用于氨基苯甲酸降解的基因以及几乎所有用于苯甲酸和苯乙烯降解的基因,这表明分离的菌株具有用于天然生物修复方法的潜力。
年龄是神经退行性疾病的最大普遍危险因素。在衰老期间,这些条件从功能的轻微丧失到日常生活中的重大干扰,独立性丧失和最终死亡。由于预计到2050年,大约25%的世界人口将超过65岁,而且没有治疗方法可以停止或逆转持续的神经退行性,因此对有效预防策略的需求更加紧迫。越来越多的研究支持饮食在健康衰老中的作用,尤其是富含生物活性植物化学化合物的饮食。最近,诸如白藜芦醇(3、5、4 0-三羟基苯乙烯)之类的Stilbenes及其类似物(翼龙),为其有效的抗氧化剂,抗炎性,抗炎性和抗癌性特性而引起了显着的关注。然而,高苯子对脑功能的有益作用的证据才刚刚开始出现。在这篇综述中,我们总结了白藜芦醇和刺骨在衰老过程中改善大脑健康方面的作用的当前知识,并特别关注抗氧化剂和抗炎性信号传导和行为结果。由Elsevier Ltd.
氧化锌纳米颗粒(ZnO NP)使用甲状腺素叶叶提取物合成,作为碱性培养基中的还原和封盖剂。UV-visible (UV-Vis) spectroscopy, Fourier transforms infrared (FTIR) spectroscopy, Brunauer– Emmett–Teller (BET), and X-ray diffraction (XRD) were used for the evaluation of the synthesized ZnO NPs, scanning electron microscope (SEM) was further used for analyzing the morphology, size, and thermal stability of the颗粒。通过使用微型(标准)ZnO研究了苯乙烯丁二烯橡胶/天然橡胶/天然橡胶(SBR/NR)规律的固定时间和机械特征,包括ZnO NPS。具有0.5 PHR的SBR/NR硫酸盐(每一百个橡胶)ZnO NPS具有增强的固化和机械特性,与SBR/NR Vulcanizate具有5 phR标准ZnO相关。fesem图像显示了ZnO NP在纳米复合材料中的均匀分布和良好的分布。结果,增强了堆积ZnO NPS堆积的SBR/NR的机械特征。因此,ZnO NP充当固化激活剂,以增加SBR/NR硫化物的所得特性。值得注意的观点是,与氧化锌的量相比,所消耗的ZnO NP的数量显着下降,这是环境问题之一。
摘要:纳米纤维的生产已成为重要的研究领域,因为它们在生物医学,纺织品,能源和环境科学等各个领域的独特性和多种应用。静电纺丝是一种多功能且可扩展的技术,它因其能够用量身定制的特性制造纳米纤维的能力而引起了人们的关注。在各种构造聚合物中,由于其特殊的电导率,环境稳定性和易于合成性,因此出现了聚(3,4-乙基二苯乙烯)(PEDOT)(PEDOT)作为有希望的材料。基于PEDOT的纳米纤维的静电纺丝提供可调的电气和光学性能,使其适用于有机电子,储能,生物医学和可穿戴技术中的应用。This review, with its comprehensive exploration of the fabrication, properties, and applications of PEDOT nanofibers produced via electrospinning, provides a wealth of knowledge and insights into lever- aging the full potential of PEDOT nanofibers in next-generation electronic and functional devices by examining recent advancements in the synthesis, functionalization, and post-treatment methods of PEDOT nanofibers.此外,审查确定了当前的挑战,未来的方向以及潜在的策略,以解决可扩展性,可重复性,稳定性和集成到实用设备中,从而为导电纳米纤维提供了全面的资源。
摘要:电色素的低功耗使其广泛用于主动阴影窗户和镜子,而柔性版本可用于可穿戴设备。最初的可拉伸电致元元素的初始演示有望与复杂表面的良好相符。在这里,完全集成的本质上可拉伸的电致色素设备被证明为单个元素和3×3显示器。导电和电离离子液含量的聚(3,4-乙二醇二苯乙烯)聚苯乙烯磺酸盐磺酸盐与聚(乙烯基醇)的电解质结合在一起,形成完整的细胞。显示出15%的传输变化,而不透明的反射设备的反射率变化为25%,即使在30%的应变下,转换时间也<7 s。在电化学和机械应变循环下均具有稳定性。一个被动矩阵显示器在应变下表现出可寻址性和低串扰。可比的光学性能与柔性电色素和更高的可变形性提供了可穿戴,生物识别监测和机器人皮肤设备的有吸引力的品质。关键字:电致色素,可拉伸,PEDOT,显示,导电聚合物,离子皮肤,电子皮肤
方案 1 。Fe-氧介导的烯烃氧化。Fe-氧介导的烯烃氧化通常会生成相应的环氧产物。以苯乙烯 (1) 为模型底物,P450 催化的烯烃环氧化(环氧化物途径,紫色)和反马氏氧化(羰基途径,橙色)的拟议催化循环,首先形成铁-氧复合物,称为化合物 I (Cpd I)。第一个 C–O 键形成 (TS1) 生成短寿命自由基中间体 (Int-1),该中间体通过非常快速的第二个 C–O 键形成步骤 (TS2) 直接转化为环氧产物 (2)。这两个 C–O 键形成步骤通常以立体特异性方式进行,可能分步发生(当形成浅反应性自由基中间体时没有差向异构化)或以协同方式发生。另一种逐步反马氏氧化(羰基途径)被认为是通过分子内电子转移发生的,产生高反应性的碳正离子中间体(Int2)。随后的 1,2-氢化物迁移(TS3)产生羰基产物醛 3。