植物再生是植物繁殖的一个重要方面,也是转基因植物生产的关键步骤。然而,不同基因型和物种的再生能力差异很大,其分子基础在很大程度上是未知的。全基因组关联研究 (GWAS) 等关联作图方法早已证明能够帮助揭示植物性状变异的遗传基础;然而,这些方法的性能取决于表型分析的准确性和规模。为了对模型树杨树的植物愈伤组织和芽再生进行大规模 GWAS,我们开发了一个涉及语义分割的表型组学工作流程,以量化再生植物组织随时间的改变。我们发现得到的统计数据高度非正态分布,因此采用了变换或排列以避免违反 GWAS 中使用的线性模型的假设。我们报告了超过200个统计学上支持的数量性状基因位点(QTL),其中基因包含或接近顶级QTL,包括细胞粘附、应激信号和激素信号通路的调控因子,以及其他多种功能。我们的研究结果鼓励植物再生过程中激素信号转导模型除了通常考虑的生长素和细胞分裂素途径外,还应考虑应激相关信号(例如涉及茉莉酸和水杨酸)的关键作用。我们鉴定的假定调控基因和生物学过程为理解植物再生的生物学复杂性提供了新的见解,并可能成为改善顽固基因型和物种再生和转化的新方法。
Aaron Ordower,议会区2艾里森·史密斯(Allison Smith),南加州天然气安德里亚·罗哈斯(Andrea Rojas),塞拉俱乐部安迪·施拉德(Andy Shrader),市议会第5区阿曼多·弗洛雷斯(Armando Flores),瓦尔利工业贸易贸易协会布鲁斯·托辛达(Bruce Tsuchida),布鲁特集团卡姆登·柯林斯(Brattle Camden Collins),公共责任办公室(Regpayer Advisocate)居民议会可持续性的公共构成派对派对,居民委员会的居民,派对,派对派对,公共顾问委员会(Regpayer Advisocate) DWP倡导委员会茉莉·瓦尔加斯(Jasmin Vargas),食品和水上行动Jean-Claude Bertet,洛杉矶市律师Jim Caldwell,能源效率和可再生技术中心Kendal Asuncion中心,洛杉矶商会洛林伦德奎斯特,加利福尼亚州立大学,诺里奇卢斯库斯大学,诺里奇·卢德奎斯特,诺斯里奇·卢伊斯·艾姆雷斯·阿米斯·艾尔斯拉·艾尔斯拉·艾尔斯拉·艾尔斯拉·艾尔斯拉·艾尔斯拉·艾尔斯拉·艾尔斯拉·艾尔斯拉·艾姆斯·艾尔斯拉·艾尔斯卡·艾尔斯卡·艾尔斯·埃姆拉斯。加塞蒂·托尼·威尔金森(Garcetti Tony Wilkinson),邻里理事会Aaron Ordower,议会区2艾里森·史密斯(Allison Smith),南加州天然气安德里亚·罗哈斯(Andrea Rojas),塞拉俱乐部安迪·施拉德(Andy Shrader),市议会第5区阿曼多·弗洛雷斯(Armando Flores),瓦尔利工业贸易贸易协会布鲁斯·托辛达(Bruce Tsuchida),布鲁特集团卡姆登·柯林斯(Brattle Camden Collins),公共责任办公室(Regpayer Advisocate)居民议会可持续性的公共构成派对派对,居民委员会的居民,派对,派对派对,公共顾问委员会(Regpayer Advisocate) DWP倡导委员会茉莉·瓦尔加斯(Jasmin Vargas),食品和水上行动Jean-Claude Bertet,洛杉矶市律师Jim Caldwell,能源效率和可再生技术中心Kendal Asuncion中心,洛杉矶商会洛林伦德奎斯特,加利福尼亚州立大学,诺里奇卢斯库斯大学,诺里奇·卢德奎斯特,诺斯里奇·卢伊斯·艾姆雷斯·阿米斯·艾尔斯拉·艾尔斯拉·艾尔斯拉·艾尔斯拉·艾尔斯拉·艾尔斯拉·艾尔斯拉·艾尔斯拉·艾尔斯拉·艾姆斯·艾尔斯拉·艾尔斯卡·艾尔斯卡·艾尔斯·埃姆拉斯。加塞蒂·托尼·威尔金森(Garcetti Tony Wilkinson),邻里理事会
对于CLMV国家的中小型企业,泰国纺织研究所(Thailand Textile Institute)从2022年9月26日至2022年10月7日在泰国曼谷的茉莉城酒店(Jasmine City Hotel)组织了纺织品和服装行业的能力发展及其在CLMV国家内的中小型企业的可持续性。能力发展,这是亚哈克夫塔联合委员会在2022年认可的东盟fta经济和技术合作工作计划(Ahkfta Ecotech工作计划)下的项目之一某些由COVID-19危机影响的作品或服务。能力开发汇集了CLMV国家的服装和纺织协会的22位代表,以及泰国纺织研究所和香港纺织品和服装研究所的专家,分享在19日和后期19日大流行期间繁荣的服装和纺织工业的最佳实践。泰国纺织研究所作为该项目的实施机构,分为三个阶段进行了能力开发。第一阶段是进行了一项研究,以评估CLMV国家的服装行业的现状,包括COVID-19大流行危机对行业的影响,第二阶段是通过在整个供应链中进行理论和实践会议进行培训,并在整个供应链中进行理论和实践会议,并与专家共享一阶段,并且最终阶段与专家们共享了一个投资的投资,并且可以更新群众的发展,而另一个又一次的群体和文字进行了又一次的开发。可以在此处访问CLMV国家服装行业的研究。在培训期间,参与者了解了纺织品产品设计,纺织品管理,纺织品测试,用于染色,打印和精加工过程中的原材料类型,漂白过程,染色过程,纺织品打印过程,纺织品完成过程,测试,染色,印刷,打印过程以及饰面过程以及天然纤维的精加工过程和开发。培训的目的是提供知识和专业知识,升级技能,并产生每个国家的知识和经验的交流,从而导致连通性和合作与中国东盟和香港共同开发可持续的纺织品和服装行业相互协助。此外,参与者有机会从领先的纺织品和服装公司(例如BC Weaving Boonchuay Industrial Co. Ltd(泰国),Luckytex上市公司(中国香港)和PMQ Hong Kong学习最佳实践。Sources: https://www.thaitextile.org/th/activities/detail.3220.1.0.html https://www.myanmargarments.org/the-capacity-development-on-textile-garment-industry-and- its-sustainability-for-smes-of-clmv-countries-training/ https://www.youtube.com/watch?v=4cq69rf225a
2024年1月7日,植物合成生物学的博士后地位。由托比亚斯·乔尔斯(Tobias Jores)领导的新成立的艾米·诺伊特(Emmy Noether)小组在海因里希海恩大学杜塞尔多夫(Heinrich Heine UniversityDüsseldorf)的合成生物学研究所(Tobias Jores)领导,正在寻找博士后研究员(M/F/D,TV,TV-l e13,100%,3年),以设计和特征。项目摘要:候选人将是由DFG(德国),BBSRC(英国)和NSF(美国)资助的国际研究项目的一部分,该项目旨在旨在在工厂中进行工程基因调节以产生可预测的表达。特别是该项目着重于表征茉莉酸或铜诱导的调节性DNA图案,并结合这些基序以创建可调且可编程的调节元件。候选人将使用包括植物starr-seq在内的尖端技术,这是研究植物顺式调节元件的活性以及系统构建和研究可诱导的调节元件的高通量测定法。候选人的工作将进一步了解我们对植物基因调控的理解,并为植物生物技术应用产生良好的表达盒。我们正在寻找的人:我们正在寻找对植物生物学深深兴趣的候选人,高度的动力,对实验的奉献精神,开放的学习和发展新技术以及协作的思维方式。分子或细胞生物学,生物化学,生物技术或相关领域的博士学位是先决条件。具有高通量测定,下一代测序,基因调节或植物生物学的经验是有优势的。首选的开始日期是5月1日,2025年。我们提供的是:我们提供了3年的全部资金(TV-L E13,100%)职位,并有机会在植物基因调节研究和植物合成生物学的最前沿进行一个令人兴奋且具有挑战性的项目。我们的年轻和热情的小组在国际环境中主持了合成生物学研究所。候选人将被整合到主机研究所内的联合课程中,并参加研讨会。作为合作项目的一部分,候选人将与Nicola Patron博士(剑桥大学)和Christine Queitsch(华盛顿大学)的研究小组进行定期交流。海因里希海恩大学杜塞尔多夫的目标是增加受雇妇女的百分比,因此明确鼓励妇女申请。同样有资格的残疾申请人将被偏爱。请发送您的申请,包括简历,动机信以及两个参考文献的联系方式,作为Tobias Jores(pantgenereg@hhu.de)的单个文件。
摘要:印度是世界第二大稻生产商,占全球生产的20%以上。稻米是印度的主要农作物,覆盖了约4,300万公顷的土地。印度的主要水稻生产国家是西孟加拉邦,北方邦,旁遮普邦,安得拉邦和泰米尔纳德邦。有不同类型 /大米的品种,印度种植了6,000多种大米。流行品种包括basmati,茉莉和非 - 巴斯塔蒂。生产季节是哈里夫(6月至9月):主要的水稻种植季节和狂犬病(10月至3月):次要的水稻成长季节。平均收益率为2.5-3.5吨每公顷,每年总产量超过1.1亿吨。GOI采取了许多倡议,以促进印度的水稻种植,其中一些是国家粮食安全任务(NFSM),以增加水稻的产量,以及大米出口政策以促进出口。对全球大米的需求不断增长,激发印度培养越来越多的大米,并同样提高出口潜力。还可以转移并尝试新品种或多样化到其他大米品种。GOI必须确保可持续的水稻种植实践。种植越来越多的大米也会增加称为稻草的农业废物,在印度,稻草经常被燃烧,造成空气污染,但倡议促进了其用于生物能和堆肥的用途。在中国,日本和许多其他国家 /地区,使用稻草来进行生物能源,动物饲料和纸张生产。关键字:稻草,生物气,压缩生物气(CBG),绿色燃料,农业废物1.也是全球联合国食品和农业组织(FAO)促进了对生物能源,动物饲料和土壤修正的可持续使用,同样,国际能源机构(IEA)也将稻草视为生物营养和生物燃料的潜在原料。引言稻草,丰富的农业废物可以转换为沼气,这是一种干净可再生的能源。稻草的厌氧消化产生甲烷(CH4)和二氧化碳(CO2)的混合物,可用作烹饪,照明和发电的燃料。沼气生产过程涉及将稻草喂入消化池,在那里微生物分解有机物,释放沼气。然后收集,存储和利用气体。沼气具有许多好处:•可再生能源•减少温室气体排放•提供能源独立性•为农民创造额外的收入•最小化沼气所产生的废物和污染可以取代化石燃料,减少对不可租用能源的依赖。此外,消化的浆液可用作有机肥料,富集土壤健康。随着稻草的广泛供应,沼气生产具有巨大的潜力,可以促进可持续的能源未来。通过利用此能源,我们可以减少碳足迹并促进更清洁的环境。稻草,也称为稻草,是收获大米后留下的生物质。稻草在水稻生产国广泛使用,估计全球生产每年超过7亿吨。稻草主要由:
考试费率名称 命令 简称 ABE1 ANDRES BRYANJEF PCU JOHN F KENNEDY CVN 79 NEWPORT NEWS VA ABE1 BERGSTROM CALEB NAVSTA NORFOLK VA ABE1 BROWER TIFFANY NAS LEMOORE CA ABE1 CHAMBERS BRANDO USS HARRY S TRUMAN ABE1 CLAPPER MICHAEL USS GEORGE H W BUSH ABE1 CODY JONATHAN L USS ABRAHAM LINCOLN ABE1 CONTRERAS ANDRE NTAG SOUTHWEST DET SAN DIEGO ABE1 CRETU BLANCHE W NAVBASE CORONADO SAN DIEGO CA ABE1 DASILVA STEFANI PERSUPP DET WILLOW GROVE PA ABE1 DEFEO JOHN MICH NAVCRUITDIST COLUMBUS OH ABE1 DEYOUNGFARIA AY 罗纳德·里根号航空母舰 ABE1 德雷克斯勒 威廉号航空母舰 ABE1 费雷尔 安德鲁号航空母舰 海军瓦森纳迪夫 莱克赫斯特 新泽西州 ABE1 菲克 埃米尔 迪马尔 艾尔特夫龙 二 三 帕图克森特河 MD ABE1 弗莱彻 杰森号航空母舰 约翰·C·斯坦尼斯号航空母舰 ABE1 弗雷利 雅各布·利 海军巡航团 哥伦布 俄亥俄州 ABE1 加莱特 茉莉号航空母舰 德怀特·D·艾森豪威尔号航空母舰 ABE1 加西亚·亚历山大 亚伯拉罕·林肯号航空母舰 ABE1 加西亚·约赛亚 哈里·S·杜鲁门号航空母舰 ABE1 戈迪诺 米歇尔 海军基地 诺福克 弗吉尼亚州 ABE1 冈萨雷斯·克雷格 哈里·S·杜鲁门号航空母舰 ABE1 古铁雷斯 贾斯米 海军基地科罗纳多 圣地亚哥 加利福尼亚州 ABE1 霍利迪 坦塔尔 约翰·C·斯坦尼斯号航空母舰 ABE1 霍恩斯比 泰勒 K TAOC 魔幻城 ABE1 伊朗萨里 多洛尔 杰克逊维尔海军基地 佛罗里达州 ABE1 杰夫科特 里贾纳 杰拉尔德·R·福特号航空母舰 CVN-78 ABE1 朱厄特 特蕾西·勒 乔治·H·W·布什号航空母舰 ABE1 金·肖恩·罗布 德怀特·D·艾森豪威尔号航空母舰 ABE1 奈特·扎卡里 乔治·H·W·布什号航空母舰 ABE1 马布里·安东尼 E FRC 西岸 勒莫尔 加利福尼亚州 ABE1 马丁·沙玛丽 艾尔特夫隆 二三 帕图森特河 MD ABE1 米勒 以赛亚 J·珀苏普 DET 威洛格罗夫 宾夕法尼亚州 ABE1 诺格拉斯 达里安NAVAIRWARCENACDIV LAKEHURST NJ ABE1 PARKINSON ANNEM NAS PENSACOLA FL ABE1 PAVEY ZACHERY A NAS OCEANA VA ABE1 PETERS SHERONE USS RONALD REAGAN ABE1 PIERRELOIS KEL USS NIMITZ ABE1 POWNALL GEORGE NAS LEMOORE CA ABE1 RIVERAMALDONADO TAOC海湾海岸 ABE1 ROGERS PAYSON C NAVAVSCOLSCOM PENSACOLA FL ABE1 罗萨里奥雷马特 NAF ATSUGI JA ABE1 RUIZ MICHAEL AN NAVAIRWARCENACDIV LAKEHURST NJ ABE1 RUSH KILLIAN NA PCU JOHN F KENNEDY CVN 79 纽波特纽斯 VA ABE1 圣地亚哥雷蒙 USS约翰·C·斯坦尼斯·ABE1萨蒂拉·詹姆斯·TU NAVCONBRIG 查尔斯顿 SC ABE1 沙伯·特洛伊 VI USS 约翰·C·斯坦尼斯