1 Greentech,Biop fe le clermont-limagne,63360法国圣布泽尔; aureliewauquier@greencell.tech(A.W.); producty@greencell.tech(R.D.); jeanyvesberthon@greentech.fr(J.-Y.B.)2 Labgem,GénomiqueMébabolique,Genoscope,Genoscope,InstitutFrançoisJacob,CEA,CNRS,CNRS,Universitéd'évryUniversitéd'évry,Universitéparis-Saclay,2 Rue Gastoncrémieux,91057 Evry,France,France; acalteau@genoscope.cns.fr(A.C。); mbeuvin@genoscope.cns.fr(M.B.); vallenet@genoscope.cns.fr(d.v.)3植物和病原体,研究所的土地自然与环境,日内瓦工程,建筑与景观学院(HEPIA),HES-SO SO-SO应用科学与艺术大学西瑞士,瑞士1254,瑞士朱西; julien.crovadore@hesge.ch(J.C。); bastien.cochard@hesge.ch(B.C.); francois.lefort@hesge.ch(F.L。)*信函:pijoly@gmail.com;电话。: +33-(0)4-73-33-44-55
肠壁是第一道防线,可防止从管腔进入系统环境的各种有害物质。障碍功能受损,随之而来的有害物质转移到系统性循环(“渗漏肠”)中是许多胃肠道,自身免疫,心理和代谢疾病的中心主题。益生菌已成为维持肠道完整性并解决“肠道渗漏”的有前途的策略。在体内分析中使用硅,体外和鸟类,我们先前表明,从肉鸡鸡具有良好的安全prifiles具有良好的安全性。与最近的一项研究一致,在这里我们表明,路易特林。每天对Sprague Dawley大鼠大鼠进行高剂量的高剂量R. Reuteri 3630和3632,但发现没有不良影响是安全的。更重要的是,通过下调炎症细胞因子并上调鼠标渗漏肠胃肠道肠道肠道的抗炎细胞因子,通过下调炎症细胞因子和上调抗炎细胞因子,从而显着降低了与酒精诱导的肠道相关的标记。而L. reuteri 3630细胞和上清液没有激活,但L. reuteri 3632细胞但没有上清液显示AHR的激活,AHR是调节肠道和免疫稳态的关键转录因子。L. reuteri 3630在乳酸杆菌物种的典型形态学中是奶油白色,而L. reuteri 3632显示出独特的橙色色素沉着,即使在传播了480代后,也稳定。我们确定了L. Reuteri 3632中的稀有聚酮化合物生物合成基因簇,该基因可能编码为橙色颜料的二级代谢产物。类似于Reuteri 3632细胞,纯化的橙色代谢物激活了AHR。全部,这些数据提供了有关系统发育相关性,安全性,功效的证据,以及R. Reuteri 3630和3632的可能作用机理之一,用于潜在的益生菌应用,以解决人类中“漏水”和相关的病理。
84.21 418 9.84 92 91.37 0.525 3.89 13.50 Y S 89.9 389 10.96 86 90.02 0.69 3.86 17.88 Y Z 91.52 341 9.87 94 87.42 0.605 3.795 15.94 G B P 92.89 421 10.22 87 88.15 0.515 3.415 15.08 g B S 93.11 413 9.29 83 83.16 0.535 3.37 15.88 G B Z 94.56 405 10.44 86 91.13 0.54 3.255 16.59平均94.79 411.1
由水稻白叶枯病 (BB) 病原菌 (Xoo) 引起的水稻细菌性叶枯病威胁着全球粮食安全和小规模水稻生产者的生计。对来自亚洲、非洲和美洲的 Xoo 样本的分析表明,尽管全球大米贸易强劲,但其分布却呈现出令人惊讶的大陆隔离现象。本文,我们报告了坦桑尼亚前所未有的 BB 疫情。与地方性的 Xoo 不同,病原菌株携带针对蔗糖转运蛋白 SWEET11a 并抑制 Xa1 的亚洲型 TAL 效应物。系统基因组学将这些菌株与来自中国的 Xoo 菌株聚集在一起。非洲水稻品种没有携带合适的抗性基因。为了保护非洲水稻生产免受这种新出现的威胁,我们开发了一种混合 CRISPR-Cas9/Cpf1 系统来编辑东非优良品种 Komboka 的三个 SWEET 启动子中的六个 TALe 结合元素。经过编辑的品系表现出对亚洲和非洲Xoo菌株的广谱抗性,包括最近在坦桑尼亚发现的菌株。这一策略可能有助于保护全球水稻作物免受BB大流行的影响。
Valley Delmech,Nadia Perthat,Oriane Monet,外国Marion,Darii Ecataria和Al。插入Methabolia,2022,72,pp.200-214。10.1016/j.ymben.2022.03.010。
叶际代表一个独特的生态位,其中微生物获得了降解木质纤维素 (1) 的能力,以便在贫营养条件下生存。从叶际回收的微生物中,存在属于类芽孢杆菌科和糖芽孢杆菌属的细菌 (2)。糖芽孢杆菌属菌株 WB 17 是从 2018 年 1 月从法国香槟-阿登地区采集的小麦麸皮叶际培养物中回收的。培养在 30°C 的 1 M3 培养基 (3) 上进行,培养基中添加了小麦麸皮,有氧培养。糖芽孢杆菌属 WB 17 是根据其 16S rRNA 基因序列进行鉴定的,与糖芽孢杆菌属有关。为了进一步表征糖芽孢杆菌属的代谢潜力。 WB 17 及其分离木质纤维素的能力,对其整个基因组进行了测序。Saccharibacillus sp. WB 17 在 Luria-Bertani 培养基中在 30°C 下生长 48 小时,并使用 PureLink 基因组 DNA 迷你试剂盒(赛默飞世尔科技)提取其基因组 DNA。使用 Nextera DNA 样品制备试剂盒(Illumina,美国加利福尼亚州圣地亚哥)按照制造商的用户指南进行全基因组散弹枪测序(2 150 bp),并在 NovaSeq 系统(MR DNA [Molecular Research],美国德克萨斯州 Shallowater)上进行测序。总共获得了 30,007,734 个读数。使用 FastQC (4) 对序列数据文件进行质量过滤,然后通过 SOAPdenovo(版本 2.04)(5)进行从头组装;所有软件均使用默认参数。共检测到47个contig,测序覆盖度为409倍。N 50 值为205,341 bp。组装基因组大小为5,391,836 bp。该菌株的基因组大小介于两个最接近的Saccharibacillus亲属之间(Saccharibacillus sacchari GR21 T 为6.08 Mbp,Saccharibacillus kuerlensis HR1 T 为4.69 Mbp)。Saccharibacillus sp. WB 17的GC含量为58.82%。该值在Saccharibacillus基因组已知值范围内。事实上,之前测序的基因组记录的 GC 含量值如下:58.4 mol% ( Saccharibacillus qingshengii H6 T ) (6)、57.8 mol% ( S. sacchari GR21 T ) (7)、50.5 mol% ( S. kuerlensis HR1 T ) (8) 和 55.5 mol% ( Saccharibacillus deserti WLJ055 T ) (9)。Saccharibacillus sp. WB 17 的基因组草图由 NCBI 原核生物基因组注释流程 (PGAP) ( https://www.ncbi.nlm.nih.gov/genome/annotation_prok ) 注释;它包含 73 个 tRNA、4,826 个基因和 4,730 个编码序列 (CDS)。仅注释了 1,139 个 CDS,占基因组内容的 22%。根据碳水化合物活性酶数据库 (CAZy) 数据库 (10),基因组共编码 236 个碳水化合物活性酶,分为五类,即糖苷水解酶 (145 个 CDS)、糖基转移酶 (31 个 CDS)、多糖裂解酶 (3 个 CDS)、碳水化合物酯酶 (31 个 CDS) 和碳水化合物结合模块 (21 个 CDS);然而,
摘要:研究给定物种的多样性可以为自动启动培养物的发展提供线索。然而,很少有研究集中在乳酸杆菌delbrueckii菌株的种内多样性上,这是一种对乳制品行业技术上重要的乳酸细菌。出于这个原因,分离并表征了来自圣尼克尔保护的原产地名称(PDO)区域的乳酸杆菌菌株。遗传多样性是基于核心基因组系统发育重建和pangenome分析确定的,而表型评估涵盖了蛋白水解和挥发性复合生产潜力。总共15 L. delbrueckii ssp。乳酸化获得了独特的新菌株。遗传分析和进一步的蛋白水解活性测量表明,这些圣奈克菌株之间的变异性较低,而在Delbrueckii SSP中观察到了实质性的遗传变异性。乳酸亚种的整体。菌株之间的挥发性化合物纤维略有不同,一些菌株产生的挥发性化合物可能会引起奶酪伏鸟的发育特别感兴趣。与总体亚种的多样性相比,圣奈克菌株之间的遗传多样性相对较小,它们的独特特征和与公开可用的基因组的明显分化将其定位为开发自卫星启动培养奶酪生产的有前途的候选者。
1 Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602 2 Department of Plant Biology, University of Georgia, Athens, GA 30602 3 Genomics and Bioinformatics Research, USDA-ARS, Athens, GA 30605 4 Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602 ABSTRACT Interspecific hybridization in真菌在真菌进化和潜在商业应用中的作用引起了人们的关注。成功的杂交可以增强适应性并促进对新生态壁ches的适应。然而,真菌中杂交的基因组后果知之甚少。epichloë是一种真菌属,包括非杂交和杂化物种,通过寄生虫杂交和无性繁殖形成杂种。某些Epichloë杂种具有商业意义,因为它们将Lolium arundinaceum(Schreb。)殖民地殖民darbysh。,一种至关重要的草料和草皮草。在这项研究中,我们试图为两个先前未表征的Epichloë杂种菌株生成高质量的基因组组件,这两种菌株都类似于Epichloësp。fatg-3。我们旨在表征它们的基因组,并检查寄生间种间杂交对真菌基因组结构的影响。我们的结果表明,这两种菌株的基因组都富含富裕的块和重复元素。与推定的祖细胞基因组进行比较后,我们观察到明显的碎裂和重排。尽管存在基因组不稳定性,但仍保留了来自每个祖细胞物质的85%以上的基因同源物。这项研究表明,虽然寄生虫杂交显着改变了基因组结构,但并未显着影响基因含量。
摘要:2019年7月,一种疫苗衍生的重组猪生殖和呼吸综合征病毒1菌株(PRRSV-1)(Horsens菌株)感染了40多个丹麦母猪牛群,导致严重损失。在本研究中,评估了重组骑马菌株的致病性,并使用年轻的SPF猪中的特征良好的实验模型与参考PRRSV-1菌株进行了比较。此外,评估了三种不同的PRRSV-1 MLV疫苗的效率,以保护猪免受重组菌株的挑战。在挑战之后,与所有其他组相比,未接种疫苗的猪在血清中挑战了血清的病毒载量显着增加。在尸检时未观察到宏观变化,但是几乎所有猪的肺和扁桃体的组织都是PRRSV阳性的。与受到霍斯斯菌株挑战的未接种群体相比,所有接种疫苗的组中血清中的病毒负荷均低,并且在接种疫苗的组中只有很小的差异。本研究中的发现以及最近的另外两份报告表明,这种重组的“霍斯”菌株确实能够诱导成长中的猪以及与典型的PRRSV-1,Subtype 1菌株相当甚至超过的怀孕母猪的感染。然而,缺乏明显的临床体征和缺乏显着的宏观变化表明,这种菌株比以前表征的高毒性PRRSV-1菌株的毒力不那么毒。
Morelle Raïsa Djiaala Tagne、Mireille Ebiane Nougang、Edith Brunelle Mouafo Tamnou、Awawou Manouore Njoya、Pierrette Ngo Bahebeck、Samuel Davy Baleng、Paul Aain Nana、Yves Yogne Poutoum、Genevieve Bricheux、Claire Stéphane Metsopkeng、Télesphore Sime-Ngando 和 Moïse Nola DOI: https://doi.org/10.22271/micro.2023.v4.i1b.72 摘要 这项研究评估了在雅温得(喀麦隆)的井和雨水样本中分离的蜡状芽孢杆菌、苏云金芽孢杆菌和枯草芽孢杆菌菌株的抗生素敏感性。在长旱季 (LDS)、短旱季 (SDS)、长雨季 (LRS) 和短雨季 (SRS) 期间每月收集水井水样,对于雨水则在 LRS 和 SRS 期间收集。考虑的抗生素包括亚胺培南、阿米卡星、庆大霉素、环丙沙星、氧氟沙星、磺胺甲唑和四环素。对于来自地下水的菌株,对于苏云金芽孢杆菌,抗生素抑制直径从 9.13 毫米(SDS 期间的磺胺甲唑)到 32.78 毫米(LDS 期间的亚胺培南),对于蜡状芽孢杆菌,抗生素抑制直径从 8.2 毫米(SDS 期间的磺胺甲唑)到 35.25 毫米(LDS 期间的亚胺培南)不等,对于枯草芽孢杆菌,抗生素抑制直径从 5.05 毫米(LRS 期间的氧氟沙星)到 29.25 毫米(LDS 期间的亚胺培南)。雨水中的芽孢杆菌直径从 4.55 mm(LRS 期间使用磺胺甲唑)到 25.65mm(LRS 期间使用亚胺培南),蜡状芽孢杆菌从 2.13 mm(LRS 期间使用亚胺培南)到 20.05mm(SRS 期间使用亚胺培南),枯草芽孢杆菌从 5.03 mm(SRS 期间使用庆大霉素)到 25.15mm(SRS 期间使用四环素)。LRS 期间分离出的芽孢杆菌菌株对大多数抗生素具有多重耐药性。大多数抗生素的抑菌直径在不同季节之间存在显著差异(p<0.05)。关键词:抗生素敏感性,芽孢杆菌菌株,地下水和雨水,抑菌直径变化 1. 引言 不同国家的水消耗量差异很大。这取决于其发展、人口和资源本身。当水被污染时,水会成为许多疾病的主要传播媒介之一,而这些疾病是导致人类或动物大规模流行病的原因。污染源包括河流、水体、咸水以及雨水、露水、雪和极地冰。每种环境中的水都可能被化学物质和微生物污染,包括原生动物、病毒和细菌 [1] 。水环境中有各种细菌科。这些微生物具有各种特性。通常用于识别细菌微生物的一些特性是革兰氏染色细胞壁和产孢特性。芽孢杆菌属细菌被称为革兰氏阳性菌和产孢菌。它们存在于空气、水中或土壤中 [2] 。对于人类来说,一些芽孢杆菌种是病原体或机会性病原体,而另一些只是共生菌。然而,细菌的共生特性取决于其环境中的几个因素 [3] 。除了食物中毒外,这些细菌会引起局部和全身感染,有时会导致患者死亡 [4, 5] 。多年来,人们也认识到生物颗粒对大气过程的潜在相关性 [6, 7] 。空气中的生物颗粒作为一个整体也被称为生物气溶胶。它们可以包括细菌细胞和细胞碎片、真菌孢子和真菌