航空职业 A-Z 航空工程师:他或她开发、设计和测试飞机、导弹、卫星和其他系统。空运代理:此人的工作是监督货运站、记录空运货物并安排交货。空运/行李处理员:他或她装卸货物和行李、驾驶行李牵引车并操作传送带、叉车和其他空运处理设备。飞机装配工:他或她组装、装配和安装预制部件以制造固定翼或旋翼飞机或飞机子组件。飞机装配检查员检查飞机组件是否符合工程规范。他们受雇于飞机和飞机子组件制造商。这也可能包括制造飞机上的所有部件。飞机复合结构工人:随着石墨和凯夫拉纤维等现代飞机材料技术的进步,这一行业已成为一项非常有趣且具有挑战性的行业。该行业的技术人员负责维护、修理和制造塑料、玻璃纤维和蜂窝结构部件,例如飞行控制装置(襟翼、扰流板、升降舵)、机头雷达罩和各种其他蜂窝结构部件。培训包括:玻璃纤维蒙皮修复。金属蒙皮修复。飞机窗户返工。热焊修复。飞机电镀工:该行业需要通过电化学过程在飞机零件上镀上一层薄保护层。各种金属都经过电镀,例如铬、镍、银、铅锡、铜、镉。这些金属用于防腐蚀,并将磨损的部件重建为原始标准和尺寸。他们还使用特殊工艺对铝和镁进行防腐蚀处理。培训包括以下内容:实验室分析,因为所有电镀溶液均在我们自己的设施中制备和测试。电化学和电学原理。不同金属的表面处理。飞机维修工程师 (AME):他或她诊断、调整、维修、更换或大修飞机发动机和组件,例如液压和气动系统、机翼和机身,以及功能部件(包括索具、表面控制和管道),以确保适航性。该职业领域包括以下内容:飞机电工:任何现代飞机的令人满意的性能在很大程度上取决于所有电气和系统的持续可靠性。飞机电工必须能够诊断电气系统的故障,进行定期检查,维护、维修和检修所有电气系统
由于复杂性、工艺能力和对技术工人健康状况的影响,专用飞机部件的夹具设计如今非常具有挑战性。建议的用于钻外蒙皮飞机门的夹具设计将适应夹具设计原则和技术工人的人体工程学方面。建议的设计将包括舒适的钻孔姿势和结构有限元分析 (FEA)。讨论了钻孔过程所需的步骤,从加载、定位、夹紧、框架旋转到钻孔。FEA 分析表明,在框架和垂直支架之间的凸缘处记录的 von Mises 应力最大值为 6.373 × 105 N/m 2,并且外蒙皮飞机门的负载重量导致应力分布可接受。开发了一个功能齐全的原型,其比例缩小到四分之一以验证设计。开发的原型成功展示了夹具设计在钻飞机门外蒙皮时提供人体工程学考虑机制的能力。
与其他金属和复合材料相比,铝具有制造工艺简单、耐腐蚀、重量轻和成本低等优点[7]。设计飞机结构的重要参数包括抗疲劳性、密度、断裂韧性、强度和耐腐蚀性[7]。此外,在静态重量下受到拉伸时,上侧会产生压缩载荷,而下侧则相反;因此,在飞行过程中需要仔细优化拉伸和压缩强度[7]。因此,铝作为最轻的金属,可以轻松取代其他金属并承受由于飞机大型化而增加的机翼压力载荷[8]。在这方面,航空航天工业使用不同类型的铝合金,其中一些在表2中给出。然而,常见的类别大多来自2xxx和7xxx系列[9]。2000系列合金具有良好的抗疲劳裂纹扩展能力并拥有卓越的损伤容限。因此,它们通常用于飞机的机身蒙皮和下机翼,其中断裂韧性(即抗裂纹扩展)是一个重要的设计参数 [6] 。 Al2024-T3 是机身结构中最常用的 2000 系列合金 [10] 。 7000 系列通常用于上机翼蒙皮,其中强度是主要的设计因素 [6] 。 Al7075-T6 是
1.鹰狮 C 驾驶舱 2.皮托管 3.涡流产生板条 4.玻璃纤维天线罩 5.自动测向仪 (ADF) 天线 6.爱立信 PS-05 多模雷达 7.驾驶舱前部压力舱壁 8.偏航叶片(位于前机身下方且视野之外) 9.下超高频 (UHF) 天线(位于前机身下方且视野之外)视野) 10.入射叶片 11.编队照明条 12.方向舵踏板 13.挡风玻璃 14.广角抬头显示器 (HUD) 15.驾驶舱顶篷,铰接至左舷 16.顶篷破坏器微型引爆线 (MDC) 17.右舷进气口 18.MARTIN-BAKER MK10L ZERO-ZERO 弹射座椅 19.驾驶舱后部压力舱壁 20.发动机油门杆 21.左舷控制台面板 22.驾驶舱部分复合蒙皮镶板 23.带一体式滑行灯的前轮舱门 24.缩回执行器 25.双轮前起落架 26.液压转向千斤顶 27.27MM 大炮 28.左舷进气口 29.边界层分离板
摘要:结构设计必须确保其在整个使用寿命期间的安全性。为确保这一点,设计师首先应了解结构在材料、截面和载荷条件下的表现。在现代飞机结构设计中,通过考虑选择性设计特性(尤其是进行分析),可以实现高精度设计以获得最高的结构效率。加强筋、纵梁或桁条是用作机身和机翼支撑构件的薄金属条。当我们考虑飞机蒙皮对施加在其上的载荷的抵抗力时,由于脆弱性,飞机蒙皮很容易变形。为了解决这个问题,我们设计了一种可以承受挠度和应力水平的加固面板。通过改变加固面板截面和蒙皮材料,飞机蒙皮可以承受变形。在当前的研究中,考虑了运输机的代表性加固面板进行评估。将使用不同材料类型的加强筋的不同横截面对加固面板进行结构分析。随着材料的变化,通过不同的横截面确定 Von-misses 应力和变形,以确定更有利于提高飞机结构强度的截面。研究包括材料特性以承受
飞机蒙皮是飞机的重要组成部分,其完整性影响着飞机的飞行性能和安全性能。以超声无损检测为核心的损伤检测技术在飞机蒙皮损伤检测中发挥了重要作用。由于飞机蒙皮检测难度大,单纯依靠超声A扫设备检测效率很低,引入人工智能可以有效提高检测效率。本文建立了一维卷积神经网络与单发多框检测器网络,在SSD网络基础上利用空洞卷积提高超声探头的实时跟踪,同时引入1DCNN对超声A扫信号进行分类,最后将二者的检测结果结合起来实现对飞机蒙皮内部状况的反映。经测试,该算法可以识别蒙皮模拟试件,其识别准确率为96.5%,AP为90.9%,kappa值为0.996。将改进的SSD网络与SSD、YOLOv3、Faster R-CNN等网络进行对比,结果表明本文采用的改进网络更加优秀、有效;同时研究了四类优化算法、五种学习率的检测效果,最终得出对应的信号分类模型采用Adam,学习率为0.0001时效果最好。
1.简介 飞机是一种通过从空中获得推力而飞行的飞行器。它通过机翼的静态升力或动态升力,或者有时是飞机发动机的向下推力来抵消重力。围绕飞机的人体运动称为飞行。民用飞机由飞行员驾驶,但无人驾驶飞机可以由计算机间接控制或自主控制。飞机可以根据升力类型、飞机推力、用途等不同标准进行分类。较重的飞机(例如飞机)必须设法处理向下推的空气或气体,以便发生反应(根据牛顿运动定律)将飞机向上推。这种在空中的动态运动是“气动”一词的来源。有两种方法可以控制产生的快速上升力,即流线型升力和发动机推力。飞机的设计考虑了许多因素,例如客户和制造商的要求、安全协议、物理和财务要求。对于某些飞机型号,设计过程由国家适航机构控制。飞机的主要部件通常分为三类: 1.结构包括主要承重部件和耦合设备。2.动力系统包括动力源和相关设备。3.飞行包括控制、导航和通信系统,通常是电气性质的。1.1 飞机结构 飞机由五个主要辅助部分组成,即:1.机身:机身是机身的基本结构,其他所有部分都连接在其上。机身包括驾驶舱或飞行甲板、旅客舱和货舱。2.机翼:机翼是飞机最基本的升力输送部件。机翼的布置根据飞机类型及其刺激而变化。大多数飞机的设计使得机翼的外端比机翼与机身连接的地方高。3.尾翼(尾部结构):尾翼或尾部提供飞机的安全性和控制力。4.动力装置(推进系统):飞机动力装置分为五种类型。5.纵梁与壳体或肋骨可靠地关联。涡轮螺旋桨发动机用于较低速度,冲压喷气发动机用于高速飞机,涡扇发动机用于0.3马赫至2马赫,涡轮喷气发动机用于高速飞机,以及基本低速飞机的发动机。起落架:飞机的起落架将飞机支撑在地面上,平稳飞行,保持飞行和着陆的平稳。 1.2 纵梁和接头 在飞机机身中,纵梁连接到成型器(也称为机匣)并沿着飞机的纵向方向运行。它们主要负责将蒙皮上的流线型重量传递到边框和成型器中。在机翼或稳定器中,纵梁横向运行并连接在肋骨之间。这里的主要功能还包括将机翼上的扭转力转移到肋骨上并进行战斗。有时会使用“纵梁”和“纵梁”这两个词。纵梁通常比纵梁承受更大的重量,并且将蒙皮重量转移到内部结构上。纵梁通常是
在飞机维护中,绝大多数目视检查旨在查找机身上的缺陷或异常。这些检测很容易受到人工操作的错误影响。由于空中交通量不断增长以及商业航班时刻表对飞机利用率的要求不断提高,对维护操作的按时完成的压力越来越大,因此对员工的压力也越来越大 (Marx and Graeber, 1994) (Drury, 1999)。自 1990 年代以来,人们一直在研究使用机器人自动进行飞机外部检查。目的通常是帮助维护技术人员进行诊断并提高维护报告中缺陷和损坏的可追溯性。最初的机器人解决方案专注于外部表面蒙皮检查,机器人在飞机上爬行。尽管概念验证有效,但实际部署仍存在一些局限性 (Davis and Siegel, 1993) (Siegel 等, 1993) (Backes 等, 1997) (Siegel, 1997) (Siegel 等, 1998)。2010 年代初,一种名为 Air-Cobot 的轮式协作移动机器人问世。它能够在包含一些需要避开的障碍物的环境中安全地围绕飞机移动 (Futterlieb 等, 2014) (Frejaville 等, 2016) (Bauda 等, 2017) (Futterlieb, 2017) (Lakrouf 等, 2017)。两个传感器专用于检查。使用平移倾斜变焦摄像机,可以进行一些检查
提出了鱼骨主动弯曲 (FishBAC) 变形结构。这种新颖的、受生物启发的概念由四个主要元素组成:一个柔顺的骨架核心、一个预张紧的弹性基质复合材料柔顺蒙皮、一对与不可反向驱动的卷轴滑轮耦合的拮抗肌腱作为驱动机构,以及一个非变形主翼梁。FishBAC 概念能够产生翼型弯曲的大变化,因此被提议作为一种适用于固定翼飞机、直升机、风力涡轮机、潮汐涡轮机和倾转旋翼机的大型、连续可变弯曲解决方案。为了考虑该概念相对于现有技术的空气动力学性能,使用 FishBAC 概念对具有平整后缘襟翼的 NACA 0012 基线翼型和具有连续变形后缘的相同基线翼型进行了比较。在斯旺西大学的低速风洞中对一系列弯曲变形和攻角进行了测试。发现这两种方法都能产生类似的升力系数,但阻力结果的比较表明 FishBAC 几何形状的阻力显著降低。在通常用于固定翼和旋翼应用的攻角范围内,升力效率提高了 25% 左右。
16. 摘要 根据 VNTSC 和全美航空快运运营商 Henson Aviation, Inc. 之间的合作研究与开发协议,1991 年 8 月在北卡罗来纳州温斯顿塞勒姆的全美航空维修站对波音 737 飞机的机身进行了剪切散斑演示检查。检查比较了剪切散斑技术与目前强制方法在检测机身脱粘方面的有效性。现代飞机机身采用粘合剂粘合,通常与铆钉结合使用。随着飞机的老化,粘合失效可能成为一个主要问题,因为它可能导致疲劳开裂、湿气侵入和随后的腐蚀。任何这些事件都可能导致机舱压力损失,有时还会导致灾难性的机身故障。检测脱粘的剪切散斑方法取决于飞机蒙皮在不同压力下的变形。当被相干光照射时,从蒙皮的任意两点反射的光的相位关系和强度会因这种变形而发生变化。可以检测到最小到 0.00025 毫米的表面变化,并将其显示为视野的实时图像。随着压力的变化,对连续图像进行比较可以解释粘合情况。对于此演示,剪切干涉发现了 31 处脱粘;超声波确认了 25 处脱粘。