蓝藻是唯一已知的光合原核生物,是一种古老的生物,被认为是地球氧气大气的生产者和植物叶绿体的祖先。当代蓝藻已进化为广泛多样的生物,在大多数水生和土壤生物圈中定居,它们面临着各种环境挑战以及与其他生物的竞争或共生。蓝藻表现出广泛的形态多样性(单细胞/多细胞、圆柱形/球形),许多物种分化出专门的细胞以在恶劣条件下生长和生存。它们高效地转化捕获的太阳能,将大量二氧化碳中的碳固定为巨大的生物质,以维持大部分食物链,并且它们能够耐受气流中高浓度的二氧化碳。它们还合成大量生物活性代谢物,对人类健康和工业具有重要意义。因此,由于其简单的营养需求、代谢稳健性和可塑性以及某些模型菌株的强大基因,它们被视为有前途的“低成本”细胞工厂,可用于碳中性化学品的生产。
摘要。固氮微生物(固氮菌)通过将氮气还原为生物可利用氮,显著影响海洋生产力。最近,非蓝藻固氮菌(NCD)已被确定为海洋固氮的重要贡献者。其中,Gamma A 是研究最深入的海洋 NCD 之一,因为它无处不在;然而,控制其分布的因素仍然未知。特别是,微型浮游动物摄食作为自上而下控制的重要性尚未得到检验。在本研究中,我们使用 nifH 扩增子测序研究了固氮菌群落结构,并使用稀释实验和定量聚合酶链反应(PCR)相结合的方法量化了 Gamma A 的生长和微型浮游动物摄食死亡率,地点位于日本南部海岸黑潮北缘光照充足的水域。在研究区域,Gamma A 普遍存在并在固氮菌群落中占主导地位,而蓝藻固氮菌的相对丰度较低。Gamma A 的微型浮游动物摄食率明显高于整个浮游植物群落,并且通常与其生长率保持平衡,这表明 Gamma A 可以有效地将固定氮转移到更高的营养级。尽管 Gamma A 的生长率对营养物添加没有表现出明显的反应,但 Gamma A 的丰度与营养物浓度和微量元素含量有显著的关系。
光合蓝藻可在生物技术中用作环境可持续的细胞工厂,将二氧化碳转化为多种生物化学物质。然而,缺乏可用于精确和动态控制基因表达的分子工具,阻碍了代谢工程,并导致产品滴度低。光遗传学工具能够以高可调性和可逆性实现光调节的基因表达控制。到目前为止,它们在蓝藻中的应用有限,物种之间的可转移性仍不清楚。在本研究中,我们在聚球藻 PCC 7002 中表达了蓝光抑制的 YF1/FixJ 和绿/红光响应的 CcaS/CcaR 系统,并使用 GFP 荧光测定和 qRT-PCR 表征了它们的性能。非蓝藻来源的 YF1/FixJ 系统表现出较差的性能,最大动态范围为 1.5 倍,尽管采取了几个步骤来改进这一点。相比之下,源自蓝藻 Synechocystis sp. PCC 6803 的 CcaS/CcaR 系统对光波长和强度反应良好,在绿光照射 30 分钟后观察到蛋白质荧光输出增加 6 倍。监测 GFP 转录水平使我们能够量化转录激活和失活的动力学,并测试多个绿光/红光和光/暗循环对系统性能的影响。最后,我们通过对 pCpcG2 输出启动子进行有针对性的遗传修饰,提高了绿光下 CcaS/CcaR 系统的活性。本研究详细描述了 Synechococcus sp. PCC 7002 中 CcaS/CcaR 系统的行为,并强调了跨物种转移光遗传学工具的复杂性。
摘要 蓝藻是一种光合生物,在碳循环中发挥重要作用,是很有前途的生物生产底盘。在这里,我们从独特的海洋环境中分离出两种具有 4.6Mbp 基因组的新型蓝藻,UTEX 3221 和 UTEX 3222,这些蓝藻的 CO₂ 自然升高。我们描述了这两种分离物的完整基因组序列,并重点研究了 UTEX 3222(因为它在液体中浮游生长),描述了与生物技术相关的生长和生物量特性。UTEX 3222 在固体培养基上超过了其他快速生长的模型菌株。它可以在液体培养基中每 2.35 小时翻一番,并在批量培养中生长到高密度(>31 g/L 生物量干重),几乎是最近报道的高密度生长的 Synechococcus sp. PCC 11901 的两倍。此外,UTEX 3222 易于下沉,比其他快速生长的菌株沉降速度更快,这表明收获 UTEX 3222 生物质具有良好的经济效益。这些特性可能使 UTEX 3222 成为海洋二氧化碳去除 (CDR) 和 CO₂ 光合生物生产的有力选择。总体而言,我们发现在自然 CO₂ 升高的环境中进行生物勘探可能会发现具有独特特征的新型 CO₂ 代谢生物。
这项工作是由一个跨机构作者团队开发的,并得到了三角洲水质的许多敬业和热情保护者的支持。这项工作具体基于水资源部佩吉·莱曼博士发表的材料、加州水务局的淡水有害藻华监测框架和战略(南加州沿海水研究项目和州水资源控制委员会 2021 年)、三角洲区域监测计划的营养物长期规划、中央谷地区水质委员会的三角洲营养物研究计划以及三角洲独立科学委员会的萨克拉门托-圣华金三角洲水质科学(2018 年)和萨克拉门托-圣华金三角洲监测企业审查(2022 年)。我们非常感谢以下个人对本文档的开发提供的反馈和指导。
近年来,过度开采矿石和工业发展是环境中重金属释放的主要因素。结果,粮食作物和水体受到金属污染,可能对人类和其他生物的健康产生多种不利影响。这些金属和准金属,如锌、铜、锰、镍、铬、铅、镉和砷,会扰乱生物体内代谢物合成的生化途径,并导致不同疾病的病因。微生物包括细菌、古细菌、病毒和许多单细胞真核生物,它们可以跨越三个生命域——古细菌、细菌和真核生物——一些微生物,如蓝藻,在重金属的生物吸附率方面表现出很高的效率。蓝藻适合生物修复,因为它们可以在恶劣的环境中生长,对周围环境的负面影响较小,而且管理成本相对较低。蓝藻的结构没有显示出广泛的内部结合膜,因此它可以直接利用生理机制从污染地点吸收重金属。这种生化组成适合管理和生物修复污染环境中的重金属浓度。本综述旨在探索蓝藻在水体中重金属和准金属的生物修复潜力。此外,我们还确定了提高生物修复效果的前景。
1. 简介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................. ... ....................................................................................................................................................................................................................... 474 2.2. 蓝藻................................................................................................................................................................................................................................................................................................................................................................................................................................................... 474 2.2. 蓝藻....................................................................................................................................................................................................................................................................................................................................................... ... . . . . 474 3. 常量营养素和微量营养素. ... ................. ... ................. ... .......................................................................................................................................................................................................479 3.4. 磷....................................................................................................................................................................................................... ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................. ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................. ... 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。483 9. 管式反应器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................. ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................. ... ................. ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。第491章................. ... ................. ... 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。第491章................. ... ................. ... 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。第491章
作者:L Song · 2023 · 被引用 27 次 — 原核蓝藻的防御机制之一与一系列次生代谢产物(包括蓝藻毒素)的产生有关。(表...
摘要。胞外聚合物 (EPS) 是许多远洋和底栖环境中重要的有机碳库。EPS 的产生与植物和微微浮游生物的生长密切相关。EPS 通过结合阳离子并充当矿物质的成核位点,在碳酸盐沉淀中起着关键作用。水柱中大规模细粒碳酸钙沉淀事件(白垩事件)与蓝藻水华有关,包括聚球藻属。引发这些沉淀事件的机制仍存在争议。我们认为,在指数和稳定生长阶段产生的蓝藻 EPS 在白垩的形成中起着关键作用。本研究的目的是研究在模拟水华的 2 个月蓝藻生长过程中 EPS 的产生情况。使用各种技术,如傅里叶变换红外 (FT-IR) 光谱以及比色法和十二烷基硫酸钠 - 聚丙烯酰胺凝胶电泳 (SDS-PAGE) 测定法,研究了聚球藻不同生长阶段 EPS 的产生和特性。我们通过体外强制沉淀实验进一步评估了 EPS 在碳酸盐沉淀中的潜在作用。在早期和晚期稳定期产生的 EPS 所含的负电荷基团比在指数期产生的 EPS 所含的负电荷基团要多。因此,稳定期 EPS 的 Ca 2 + 结合亲和力较高,导致形成大量较小的
地球上的地下环境可以作为研究其他星球上微生物的模拟,这已成为一个活跃的研究领域。虽然光合蓝藻在极低光照环境中茁壮成长听起来可能有些矛盾,但它们却是地球洞穴中的常见居民。在整个门类中,这些蓝藻都发展出了独特的适应能力,不仅可用于生物技术过程,而且对天体生物学也有影响。例如,它们既可以通过产生允许在近红外 (IR) 辐射/远红光中进行光合作用的特定色素来适应低光照条件,也可以合成生物塑料化合物和碳酸钙鞘,这些是人类在其他星球或岩石体上殖民期间的宝贵资源。本文将重点介绍洞穴栖息蓝藻的潜在好处,并将介绍一种合适的生物反应器技术,以便在未来的太空任务中利用这些特殊的微生物。