地球上的地下环境可以作为研究其他星球上微生物的模拟,这已成为一个活跃的研究领域。虽然光合蓝藻在极低光照环境中茁壮成长听起来可能有些矛盾,但它们却是地球洞穴中的常见居民。在整个门类中,这些蓝藻都发展出了独特的适应能力,不仅可用于生物技术过程,而且对天体生物学也有影响。例如,它们既可以通过产生允许在近红外 (IR) 辐射/远红光中进行光合作用的特定色素来适应低光照条件,也可以合成生物塑料化合物和碳酸钙鞘,这些是人类在其他星球或岩石体上殖民期间的宝贵资源。本文将重点介绍洞穴栖息蓝藻的潜在好处,并将介绍一种合适的生物反应器技术,以便在未来的太空任务中利用这些特殊的微生物。
蓝藻是唯一已知的光合原核生物,是一种古老的生物,被认为是地球氧气大气的生产者和植物叶绿体的祖先。当代蓝藻已进化为广泛多样的生物,在大多数水生和土壤生物圈中定居,它们面临着各种环境挑战以及与其他生物的竞争或共生。蓝藻表现出广泛的形态多样性(单细胞/多细胞、圆柱形/球形),许多物种分化出专门的细胞以在恶劣条件下生长和生存。它们高效地转化捕获的太阳能,将大量二氧化碳中的碳固定为巨大的生物质,以维持大部分食物链,并且它们能够耐受气流中高浓度的二氧化碳。它们还合成大量生物活性代谢物,对人类健康和工业具有重要意义。因此,由于其简单的营养需求、代谢稳健性和可塑性以及某些模型菌株的强大基因,它们被视为有前途的“低成本”细胞工厂,可用于碳中性化学品的生产。
作者:L Song · 2023 · 被引用 27 次 — 原核蓝藻的防御机制之一与一系列次生代谢产物(包括蓝藻毒素)的产生有关。(表...
。CC-BY-NC-ND 4.0 国际许可证下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2022 年 9 月 6 日发布。;https://doi.org/10.1101/2022.09.05.506134 doi:bioRxiv 预印本
1. 简介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................. ... ....................................................................................................................................................................................................................... 474 2.2. 蓝藻................................................................................................................................................................................................................................................................................................................................................................................................................................................... 474 2.2. 蓝藻....................................................................................................................................................................................................................................................................................................................................................... ... . . . . 474 3. 常量营养素和微量营养素. ... ................. ... ................. ... .......................................................................................................................................................................................................479 3.4. 磷....................................................................................................................................................................................................... ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................. ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................. ... 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。483 9. 管式反应器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................. ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................. ... ................. ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。第491章................. ... ................. ... 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。第491章................. ... ................. ... 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。第491章
萜类化合物是一大类具有商业用途的天然产物。微生物生产萜类化合物被认为是稳定供应这些复杂碳氢化合物的可行方法。蓝藻是一种光合原核生物,是可持续生物生产的有吸引力的宿主,因为这些自养生物只需要光和二氧化碳就能生长。尽管蓝藻已被改造成生产各种化合物,但它们的萜类化合物生产率通常较低。需要进一步研究以确定提高蓝藻萜类化合物产量的瓶颈反应。在这项研究中,我们对快速生长的蓝藻 Synechococcus elongatus UTEX 2973 进行了改造,使其生产一种商业用途的萜类化合物柠檬烯。我们在编码香叶基香叶基焦磷酸合酶 crtE 的基因中发现了一个有益的突变,导致柠檬烯产量增加了 2.5 倍。工程菌株以每天 8.2 mg L 1 的速率生产了 16.4 mg L 1 的柠檬烯,比之前报道的其他蓝藻物种的柠檬烯产量高出 8 倍。此外,我们采用了组合代谢工程方法来优化参与柠檬烯生物合成上游途径的基因。通过调节编码 MEP 途径中的酶和香叶基焦磷酸合酶的基因的表达,我们表明优化表达水平对于提高蓝藻中的柠檬烯产量至关重要。
近年来,过度开采矿石和工业发展是环境中重金属释放的主要因素。结果,粮食作物和水体受到金属污染,可能对人类和其他生物的健康产生多种不利影响。这些金属和准金属,如锌、铜、锰、镍、铬、铅、镉和砷,会扰乱生物体内代谢物合成的生化途径,并导致不同疾病的病因。微生物包括细菌、古细菌、病毒和许多单细胞真核生物,它们可以跨越三个生命域——古细菌、细菌和真核生物——一些微生物,如蓝藻,在重金属的生物吸附率方面表现出很高的效率。蓝藻适合生物修复,因为它们可以在恶劣的环境中生长,对周围环境的负面影响较小,而且管理成本相对较低。蓝藻的结构没有显示出广泛的内部结合膜,因此它可以直接利用生理机制从污染地点吸收重金属。这种生化组成适合管理和生物修复污染环境中的重金属浓度。本综述旨在探索蓝藻在水体中重金属和准金属的生物修复潜力。此外,我们还确定了提高生物修复效果的前景。
全球变暖和气候不稳定激发了人们对利用可再生碳资源可持续生产化学品的兴趣。蓝藻是生产碳负性化学品的理想细胞工厂,因为它们具有直接利用光和二氧化碳作为唯一能源和碳源的巨大潜力。然而,将蓝藻技术应用于工业仍存在一些挑战,例如生产率低、耐受性差和产品收获困难。合成生物学可能最终解决这些挑战。在这里,我们总结了使用蓝藻细胞工厂生产增值化学品的最新进展,特别是碳负性合成生物学和蓝藻应用的新兴趋势。我们还提出了蓝藻技术未来商业化发展的几个观点。
光合蓝藻可在生物技术中用作环境可持续的细胞工厂,将二氧化碳转化为多种生物化学物质。然而,缺乏可用于精确和动态控制基因表达的分子工具,阻碍了代谢工程,并导致产品滴度低。光遗传学工具能够以高可调性和可逆性实现光调节的基因表达控制。到目前为止,它们在蓝藻中的应用有限,物种之间的可转移性仍不清楚。在本研究中,我们在聚球藻 PCC 7002 中表达了蓝光抑制的 YF1/FixJ 和绿/红光响应的 CcaS/CcaR 系统,并使用 GFP 荧光测定和 qRT-PCR 表征了它们的性能。非蓝藻来源的 YF1/FixJ 系统表现出较差的性能,最大动态范围为 1.5 倍,尽管采取了几个步骤来改进这一点。相比之下,源自蓝藻 Synechocystis sp. PCC 6803 的 CcaS/CcaR 系统对光波长和强度反应良好,在绿光照射 30 分钟后观察到蛋白质荧光输出增加 6 倍。监测 GFP 转录水平使我们能够量化转录激活和失活的动力学,并测试多个绿光/红光和光/暗循环对系统性能的影响。最后,我们通过对 pCpcG2 输出启动子进行有针对性的遗传修饰,提高了绿光下 CcaS/CcaR 系统的活性。本研究详细描述了 Synechococcus sp. PCC 7002 中 CcaS/CcaR 系统的行为,并强调了跨物种转移光遗传学工具的复杂性。
摘要。固氮微生物(固氮菌)通过将氮气还原为生物可利用氮,显著影响海洋生产力。最近,非蓝藻固氮菌(NCD)已被确定为海洋固氮的重要贡献者。其中,Gamma A 是研究最深入的海洋 NCD 之一,因为它无处不在;然而,控制其分布的因素仍然未知。特别是,微型浮游动物摄食作为自上而下控制的重要性尚未得到检验。在本研究中,我们使用 nifH 扩增子测序研究了固氮菌群落结构,并使用稀释实验和定量聚合酶链反应(PCR)相结合的方法量化了 Gamma A 的生长和微型浮游动物摄食死亡率,地点位于日本南部海岸黑潮北缘光照充足的水域。在研究区域,Gamma A 普遍存在并在固氮菌群落中占主导地位,而蓝藻固氮菌的相对丰度较低。Gamma A 的微型浮游动物摄食率明显高于整个浮游植物群落,并且通常与其生长率保持平衡,这表明 Gamma A 可以有效地将固定氮转移到更高的营养级。尽管 Gamma A 的生长率对营养物添加没有表现出明显的反应,但 Gamma A 的丰度与营养物浓度和微量元素含量有显著的关系。