该报告还指出了潜在的经济利益,这表明更高的动物福利实践可以改善产品质量,更长的保质期和增加的市场价值。例如,据报道,诸如较短的«植物持续时间和较小的捕获量之类的方法已被证明可以减轻靶标物种和非目标物种的«SH胁迫和损伤。根据ALI的说法,较低的应力水平导致乳酸的积累较少,这可以改善«NAL产物的质地和寿命。
大多数垃圾技术都以逐门范式呈现,其中涉及每个闸门的插座。在此范式中工作需要编码真实表行的编码,这涉及分别对每一行进行加密。为此,每根电线都与两个标签(位串)相关联,代表电线的半符值为真实或错误。然后,使用基于门的真实表的相应输入线标签对适当的输出线标签进行加密。因此,该方案的通信复杂性由每个门的这种密文的数量确定。垃圾方案采用有效的对称键原始素,使其非常实用。由于其广泛的适用性,它们已被广泛研究,目的是降低其具体成本,而大部分努力集中在降低沟通复杂性上;有关部分列表,请参见[21、26、27、30、32、41]。在[27]中,Kolesnikov和Schneider引入了自由XOR技术,该技术删除了电路中所有Xor门的通信。由于
最大平均差异(MMD)流在大规模计算中遭受高计算成本的影响。在本文中,我们表明MMD用Riesz内核K(x,y)= −∥ x -y∥r,r∈(0,2)具有出色的属性,可以有效地计算。我们证明,Riesz内核的MMD(也称为Energy距离)与其切片版本的MMD相吻合。因此,可以在一维设置中执行MMD梯度的计算。在此,对于r = 1,可以应用一种简单的排序算法,以减少O(Mn + N 2)到O((M + N)log(M + N))的复杂性,以使用M和N支持点进行两个测量。作为另一个有趣的后续结果,可以通过Wasserstein-1距离从上和下估算紧凑型措施的MMD。对于实现,我们仅使用有限的切片p,近似切片MMD的梯度。我们表明结果误差具有复杂性o(p
与刚性印刷电路板 (PCB) 和柔性 PCB 相比,软电路具有更高的稳健性和更好的机械阻抗匹配性,可与更广泛的宿主表面(包括纺织品和人体软组织)匹配。然而,可拉伸电子产品开发中的一个关键挑战是使用可印刷油墨的能力,这种油墨在 > 100% 的大应变下仍能保持高电导率和稳定的走线电阻。一种有前途的方法来创建具有低机电耦合的柔软、可拉伸和可印刷电子产品,就是将微流体通道或液态金属 (LM) 液滴整合到软弹性体中。[8,9] 镓基 LM,例如共晶镓铟 (EGaIn),因其高导电性、低流体粘度和可忽略不计的毒性而特别受欢迎。[10] 然而,制造带有 LM 导体的电路通常需要大量劳动力,并且需要许多手动步骤。由于 LM 的粘度低、表面张力高且与基板的粘附性差,直接打印 LM 也具有挑战性。因此,研究人员试图提出创新技术,以打印基于 LM 的电路。在一项研究中,EGaIn 沉积在印刷的 Ag 纳米墨水上,以实现电导率提高 6 个数量级、应变耐受极限提高 20 倍以上。[11] EGaIn 还用于选择性润湿光刻图案化的铜 (Cu) 走线,以创建高性能集成电路 [12],并且还沉积在电纺弹性纤维垫上,以获得具有高导电性和可拉伸性的薄膜导体。[13] 在另一项最近的研究中,LM 和银薄片悬浮在热塑性弹性体中,并用于具有极高拉伸性 (2500%) 的摩擦电纳米发电机。 [14] 其他努力包括利用 EGaIn 液滴渗透网络,无论是印刷迹线的形式 [15,16,17] 还是由悬浮在弹性体基质中的 LM 液滴组成的橡胶复合材料。[18,19,20] 然而,这些使用 LM 液滴印刷软电子器件的方法需要额外的热、光学或机械烧结步骤,以及其他形式的后处理以诱导电导率,并且印刷适性对于与微电子集成的应用受到限制
摘要 — 我们开发了一种基于化学合成的 Al µ − IDE /HfS 2 的新型电阻式气体传感器,用于在室温下精确检测甲醇蒸汽。在室温下,在 1 V 的工作偏压下,暴露于 500 ppm 的甲醇蒸汽,灵敏度高达 1.29。灵敏度是通过瞬态响应分析获得的。最重要的是,我们见证了非常快速的响应/恢复特性和良好的基线恢复。响应时间和恢复时间分别在 ∼ 12.12 s 至 ∼ 21.14 s 和 ∼ 23.72 s 至 ∼ 39 s 范围内。我们还研究了与其他干扰物质的交叉敏感性。我们还描述了全面的论证,包括可观的传感响应的朗缪尔吸附-解吸等温线。