1935 年,薛定谔提出了他认为是反对量子力学哥本哈根诠释的归谬法。他的论证基于一个“荒谬的案例”,而这个案例如今被广泛用于描述量子叠加的反直觉性质。薛定谔想象把一只猫放在一个看不见的盒子里,盒子里有一个装置,可以有 50% 的概率在一小时内杀死这只猫。由于这个致命装置采用量子过程作为触发,所以他认为这只猫处于 50% 活猫 + 50% 死猫的量子叠加态。在本文中,我们指出,如果薛定谔猫实际上如人们普遍断言的那样代表了 50% 活猫 + 50% 死猫的量子叠加,那么猫盒系统就是量子信息比特 (Qbit) 的物理实例。这与哥本哈根诠释相一致,哥本哈根诠释认为,在进行测量之前,猫是死是活的事实是不存在的。因此,对于与“打开盒子”的测量(其可能的测量结果为“活猫”或“死猫”)互补的某些测量,50% 活猫 + 50% 死猫的状态必须是 100% 概率的结果。如果不能提供物理上有意义的互补测量来“打开盒子”,并以 50% 活猫 + 50% 死猫的状态作为其(确定的)测量结果所代表的明确经验结果,那么 50% 活猫 + 50% 死猫的状态仅代表该单次“打开盒子”测量的多次试验的结果分布。也就是说,50% 活猫 + 50% 死猫的状态不是量子叠加,薛定谔猫仅仅是支持薛定谔归谬的经典信息位(Cbit)的物理实例。以双缝实验作为 Qbit 的示例,说明了互补测量的含义(双缝实验中的位置 x 和动量 p)。
量子计算机对密码学构成了迫在眉睫的威胁。巧合的是,量子计算机增强的计算能力可以解决当今使用的大部分公钥密码学所依赖的精确数学问题,比如因式分解和离散对数 [Sho94]。好消息是,“量子安全”的数学工具(如格、多元方程或同源)已经存在,可以在许多环境中用作直接替代品。尽管如此,仍存在许多挑战。例如,使用量子安全的直接替代品并不总能保证整个协议的安全性,因为许多经典证明技术无法延续到量子环境中 [VDG98、ARU14、BDF + 11]。量子攻击者也可能获得对诚实方的“叠加访问权限”,从而开辟新的攻击途径 [KM10、Zha12a、DFNS14、KLLN16]。在这项工作中,我们考虑了来自量子计算机的完全不同的威胁,据我们所知,这种威胁以前从未被发现:量子盗版!
Leibfried 等人,《自然》(2005 年) Gao 等人,《自然物理学》(2010 年) Fein 等人,《自然物理学》(2019 年)
许多量子计算和通信协议 ( 1, 2 ) 的一个关键要求是将特定的光量子态作为信息处理的资源。下面,我们将关注传播光束的量子态,它可以通过光子计数或零差检测来分析,零差检测测量信号态与具有相对相位 θ 的强参考光束之间的干涉。这可以测量一个称为电场“正交分量”的物理量,与算符 ˆ x θ = ˆ xcosθ + ˆ psinθ 相关,其中 ˆ x 和 ˆ p 是正则共轭场可观测量。算符 ˆ x 和 ˆ p 类似于粒子的位置和动量,它们通常被称为“量子连续变量”(QCV)。根据海森堡不等式,它们不能以无限的精度同时确定,所以一般不能为电场定义一个适当的相空间密度Π(x, p)。然而,可以定义一个准分布W(x, p),称为维格纳函数,其边际函数产生概率分布P(xθ)。通过测量几个θ值的分布P(xθ),可以重建维格纳函数;这个逆过程称为量子层析成像(3)。
自 Chaum 等人 [5] 以来,许多基于经典密码学的投票协议已经得到开发并成功应用。然而,基于经典密码学的协议的安全性基于一些未经证实的计算算法的复杂性,例如大数因式分解。量子计算的研究表明,量子计算机能够在短时间内对大数进行因式分解,这意味着基于此类算法的经典协议已经不安全。为了应对即将到来的量子计算机带来的风险,过去十年中已经开发了许多量子投票协议 [8, 24, 11, 9, 12, 10, 22, 25, 21, 20]。虽然所有这些工作都集中在从密码学角度研究投票的安全性问题,但 Bao 和 Halpern [3] 从社会选择理论的角度研究了量子投票,他们展示了
摘要 — 量子计算的经典模拟对于这项新兴技术的未来发展至关重要。为此,决策图已被提出作为一种补充技术,它通常可以解决这些模拟固有的指数复杂性。然而,在最坏的情况下,它们仍然无法摆脱这种复杂性。此外,虽然其他技术利用了所有可用的处理能力,但基于决策图的模拟迄今为止无法利用当今系统的许多处理单元。在这项工作中,我们表明,可以通过采用混合薛定谔-费曼方案进行模拟来同时解决这两个问题。更准确地说,我们表明使用决策图实现这种方案确实是可能的,我们讨论了实现过程中产生的问题,并提出了如何处理这些问题的解决方案。实验评估证实,这显著提高了基于决策图的模拟的最新水平——允许在几分钟内模拟某些硬电路,而这些电路迄今为止无法在一整天内模拟。索引词 — 量子计算、经典模拟、决策图、混合薛定谔-费曼
本研究对量子力学中出现的一维时间分数阶非线性薛定谔方程进行了分析研究。在本研究中,我们建立了 Sumudu 变换残差幂级数法 (ST-RPSM) 的思想,以生成具有分数阶导数的非线性薛定谔模型的数值解。提出的思想是 Sumudu 变换 (ST) 和残差幂级数法 (RPSM) 的组合。分数阶导数取自 Caputo 意义。所提出的技术是独一无二的,因为它不需要任何假设或变量约束。ST-RPSM 通过一系列连续迭代获得其结果,并且得到的形式快速收敛到精确解。通过 ST-RPSM 获得的结果表明,该方案对于非线性分数阶模型是真实、有效和简单的。使用 Mathematica 软件以不同的分数阶级别显示一些图形结构。
在这项工作中,我们基于傅里叶分析开发了一种高效的函数和微分算子表示。利用这种表示,我们创建了一种变分混合量子算法,用于求解静态、薛定谔型、哈密顿偏微分方程 (PDE),使用空间高效的变分电路,包括问题的对称性以及全局和基于梯度的优化器。我们使用该算法通过计算三个 PDE(即一维量子谐振子和 transmon 和 flux 量子比特)中的基态来对表示技术的性能进行基准测试,研究它们在理想和近期量子计算机中的表现。利用这里开发的傅里叶方法,我们仅使用三到四个量子比特就获得了 10-4 –10-5 阶的低保真度,证明了量子计算机中信息的高度压缩。实际保真度受到实际计算机中成本函数评估的噪声和误差的限制,但也可以通过错误缓解技术来提高。
简介:量子力学的奇异方面和持续发展,以及我们如何需要它来设计现代技术。黑体辐射、光电效应、原子光谱、弗兰克-赫兹实验、康普顿效应、波粒二象性、波函数、期望值、不确定性原理。[L12+T3] 薛定谔波动方程:了解薛定谔波动方程。一维束缚态问题的稳态薛定谔方程解。势垒和隧穿以及诸如 Esaki 二极管、扫描隧道显微镜等应用;3D 盒子中的粒子和相关示例(量子点、量子线等);量子力学测量和波函数坍缩 [L12+T3] 角动量和自旋方面:角动量算子。斯特恩-格拉赫实验 - 自旋。氢原子问题的解。 [L10+T4] 量子信息简介:量子密码学、纠缠、量子计算、EPR悖论、贝尔不等式 [L8+T2]