Glycom A/S 1(以下简称“Glycom”)正在寻求修改《澳大利亚新西兰食品标准法典》(以下简称“法典”),以便将微生物发酵产生的 3-岩藻糖基乳糖 (3-FL) 用作婴儿配方奶粉中的营养物质。3-FL 是母乳中含量最丰富的 10 种人乳寡糖 (HMO) 之一。它是 2'-FL 的简单结构异构体,也属于岩藻糖基化 HMO 结构类。然而,与 2'-FL 不同,3-FL 存在于所有女性的母乳中,无论其分泌状态如何,并且与大多数其他 HMO 不同,3-FL 的浓度在整个哺乳期都会增加。在婴儿配方奶粉中添加加工后的 3-FL 的目的是更准确地反映母乳的天然成分及其相关益处。这与《婴儿配方奶粉和特殊医用婴儿配方奶粉法典标准》、《较大婴儿后续配方奶粉法典标准》和《澳大利亚和新西兰婴儿配方奶粉产品部长级政策指南》中的规定一致。3-FL 旨在单独或与其他已获准使用的制成品 HMO 结合添加到婴儿配方奶粉产品中,最高使用量为 2.0 g/L(相当于 80 mg/100 KJ)。该最高使用量在成熟母乳中 3-FL 的平均浓度范围内,并且已经过英国新型食品与工艺咨询委员会的评估和确定为安全。
CRISPR-Cas 以其相对简单和准确的方式彻底改变了基因改造,甚至可以在基因组水平上使用。微藻是生物燃料和营养品的极佳原料,因为它们含有高水平的脂肪酸、类胡萝卜素和其他代谢物;然而,微藻的基因组工程尚未像其他模式生物那样发达。遗传和代谢水平的微藻工程相对完善,并且有少量基因组资源可用。它们的基因组信息被用于在微藻中稳定转基因表达的“安全港”位置。本综述提出了进一步的基因组工程方案,包括构建 sgRNA 文库、泛基因组和表观基因组资源以及微型基因组,这些方案可以一起发展为微藻碳基工程的合成生物学。乙酰辅酶 A 是碳代谢途径的核心,并进一步综述了其在微藻中生产包括萜类化合物在内的分子的作用。
由于近期取得的成就,莱茵衣藻正逐渐成为生物技术生产平台,我们将在本综述中简要总结这些成就。首先,由于近年来取得了一些令人印象深刻的改进,现在可以实现强大的核转基因表达。目前已有可实现高效、稳定核转基因表达的菌株,并且最近通过实现遗传杂交和识别其致病突变,使其更适合合理的生物技术方法。基于 Golden Gate 克隆的 MoClo 合成生物学策略是为衣藻开发的,它包括一个不断增长的工具包,其中包含 100 多个遗传部分,这些部分可以按照预定义的顺序进行稳健、快速的组装。这允许快速迭代转基因设计、构建、测试和学习。另一项重大进展来自各种改进转基因设计和表达的发现,例如系统地将内含子添加到密码子优化的编码序列中。最后,自 2016 年首次成功报道以来,CRISPR/Cas9 基因组编辑技术经历了多次改进,这为通过关闭竞争途径来优化生物合成途径提供了可能性。我们提供了一些例子,表明所有这些最新进展都牢固地确立了衣藻作为合成生物学底盘的地位,并允许将其代谢重新设计为新功能。
摘要 驯化微藻有望为人类家庭和工业消费提供可持续的各种生物资源。由于微藻工程技术的限制,其潜力还远未得到充分挖掘。相关技术不如异养微生物、蓝藻和植物的技术那么发达。然而,最近对微藻代谢工程、基因组编辑和合成生物学的研究极大地帮助提高了转化效率,并为该领域带来了新的见解。因此,本文总结了微藻生物技术的最新发展,并探讨了通过代谢工程和合成生物学过程生产特色产品和商品产品的前景。在简要介绍了经验工程方法和载体设计之后,本文重点介绍了定量转化盒设计,详细阐述了目标编辑方法和新兴的藻类细胞代谢数字化设计,以实现高产量的有价值产品。这些进步使得微藻工程方式从单基因和基于酶的代谢工程转变为系统级精确工程,从带有转基因 (GM) 标签的细胞转变为不带转基因标签的细胞,并最终从概念验证转变为切实的工业应用。最后,提出了微藻工程的未来趋势,旨在为特定菌株的特色产品和商品产品在新发现的物种中建立个性化转化系统,同时在模型藻类物种中开发复杂的通用工具包。
1 捷克共和国查理大学理学院寄生虫学系 BIOCEV、Vestec、2 西布列塔尼大学、CNRS、海洋生态系统与生态联合研究中心 BEEP、IUEM、法国普卢扎讷、3 德国马尔堡马克斯普朗克陆地微生物研究所昆虫肠道微生物学和共生研究小组、4 波兰华沙大学生物学院进化生物学研究所、生物和化学研究中心、5 加拿大埃德蒙顿阿尔伯塔大学医学系传染病科、6 瑞士洛桑联邦理工学院生命科学学院;瑞士洛桑生物信息学研究所,7 生态学、系统学和进化部,巴黎萨克雷大学,法国奥赛国家科学研究院,8 捷克科学院生物中心寄生虫学研究所,捷克 Česke´ Bud ě jovice,9 俄斯特拉发大学理学院,生物学和生态学系,捷克共和国
摘要 - 用于各种应用程序的自动化系统已被证明可以有效地达到生产力和效率。此外,它可用于监测生物培养的生长参数。微藻一直是食品,化妆品,药物和燃料的潜在来源。然而,监测微藻的生长参数,例如pH水平,盐度,溶解氧及其颜色密度随着时间的流逝尚未实现。本文介绍了一个封闭的微藻光生反应器的自动监测系统。考虑到对微藻的生长至关重要的参数,例如pH和溶解的氧气至关重要。溶解的氧,pH和盐度传感器已安装在系统上,并使用LabView进行编程,以定期进行测量。设置包括一个视觉系统,以监视溶液颜色的变化,对应于微藻细胞的种群生长。光密度读数以表征微藻生物的生长,以作为实验结果的基准。系统是
摘要:类胡萝卜素生产的研究和开发历史悠久,人们对这组色素的兴趣至今未减。现有的六种类胡萝卜素被认为具有工业重要性:虾青素、β-胡萝卜素、叶黄素、玉米黄质、角黄素和番茄红素。这些类胡萝卜素具有广泛的应用范围,由于其生物活性和着色特性,被用作食品和饮料、饲料、营养保健品、药品和化妆品中的添加剂。目前,全球色素市场以化学合成的类胡萝卜素为主。来自植物和微生物等天然来源的类胡萝卜素不那么受欢迎或普及。目前,天然类胡萝卜素市场主要由微藻雨生红球藻、盐生杜氏藻、布朗葡萄藻、真菌三孢布拉氏菌、红法夫酵母和细菌胡萝卜素副球菌代表。这些微生物产生虾青素、β-胡萝卜素、角黄素和番茄红素。红酵母、掷孢酵母、弹球酵母、戈登酵母和迪茨酵母属的几种酵母和细菌可能成为工业规模的类胡萝卜素来源,但现有技术仍需改进。本文综述了提高真菌和细菌类胡萝卜素生产竞争力的策略。考虑的策略包括选择产胡萝卜素菌株、使用低成本底物、通过添加微量元素、TCA中间体、NaCl、H 2 O 2 、光照来刺激类胡萝卜素的合成,以及优化pH、温度和通气等发酵条件。
灰色的城堡庄严地悬挂着 26 面鲜艳的旗帜,上面画着威尔士巨龙和纹章盾牌,这里将成为皇家庆典的场地。身穿中世纪外袍的传令官、身穿长袍的贵族、女王陛下的治安官、市长和私人官员将为它们加油助威。
本报告在美国内政部岛屿事务办公室 (OIA) 的支持下,与美属萨摩亚的几位重要合作伙伴合作编写而成。作者感谢 OIA 的赞助,并衷心感谢 Misipati Salanoa 博士(美属萨摩亚领土能源办公室)、Wallon Fong(美属萨摩亚电力管理局 [ASPA])、Lydia Faleafine-Nomura(OIA 驻美属萨摩亚现场代表)、美属萨摩亚可再生能源委员会 (ASREC) 成员以及其他许多人在收集、验证和审查所含信息方面提供的宝贵帮助。作者还感谢国家可再生能源实验室的 Liz Breazeale、Justin Daugherty、Jeff Gingrich、Taylor Henry、Sara Peterson、Chrissy Scarpitti、Jenny Sumner、Jared Temanson、Philip Voss 和 Adam Warren 提供的有益评论、意见和设计支持。
会议摘要 在 2023 年 1 月 26 日星期四举行的美属维尔京群岛经济发展局 (USVIEDA) 理事会会议上,理事会听取了员工关于一 (1) 项事项的意见,讨论了一 (1) 项议题,并投票如下:常规会议行动项目: 批准极点投票 – 选择 2040 愿景顾问
