ivan senock buena vista rancheria jenna rinde加利福尼亚鱼类和野生动物局克里斯塔尔·戴维斯·菲斯·菲斯·弗拉德克(Kristal Davis Fadtke)加利福尼亚州鱼类和野生动物局阿曼达·马吉尔(Amanda Maguire) Water Resources Ted Flynn California Department of Water Resources Tiffany Brown California Department of Water Resources Zhenlin Zhang California Department of Water Resources Sherri Norris California Indian Environmental Alliance Dierdre Des Jardins California Water Research Dana Shultz Central Valley Regional Water Board Janis Cooke Central Valley Regional Water Board Meredith Howard Central Valley Regional Water Board Veronica Burell Contra Costa Environmental Health Lisamarie Windham-Myers三角洲首席科学家劳雷尔·拉尔森(Laurel Larsen Delta)首席科学家(前)伊娃·布什(Eva Bush Delta)管家委员会亨利·德比(Henry Debey)亨利·德贝(Henry Debey)公园克里斯汀·约阿布(Christine Joab
此预印本版的版权持有人于2024年2月21日发布。 https://doi.org/10.1101/2024.02.19.579948 doi:Biorxiv Preprint
V.课外活动:1。建立一个微生物学俱乐部,学生可以聚集在一起讨论和探索与微生物学有关的各种主题。2。组织微生物学主题的事件,例如微生物学第3天的海报演示,口头演示和问答环节。4。与微生物相关站点的实地旅行5。建立一个微生物学期刊俱乐部,学生可以在其中审查和讨论与微生物学有关的科学文章。
自文明诞生以来,我们依靠农业来维持生计、提供医疗保健和获取资源。然而,在气候驱动的农业挑战中,传统的农业实践已不足以满足不断增长的人口的需求。微藻成为希望的灯塔,提供可持续和可再生的食物、动物饲料和能源来源。它们生长迅速、对非耕地和非饮用水的适应性强,生物产品种类多样(包括生物燃料和营养保健品),使它们成为未来资源管理的基石。此外,微藻捕获碳的能力符合环境保护目标。虽然微藻提供了显著的好处,但成本效益高的生物质生产障碍仍然存在,这限制了其更广泛的应用。本综述将微藻与其他宿主平台进行了比较,强调了当前旨在克服现有障碍的创新方法。这些方法包括一系列技术,从基因编辑、合成启动子和诱变到通过转录因子进行选择性育种和代谢工程。
有效。纳米材料将显着扩大我们对疾病如何起源于神经系统的了解,以便我们可以在早期诊断疾病。本综述将纳米材料描述为神经系统疾病的概述。本文将借助最近的数据和当前的研究来介绍纳米材料在神经系统疾病中的利用。本文还将集中于纳米材料及其毒理学在神经病学中的重要重要性。本评论论文将处理纳米材料在神经学研究中的许多不同应用及其对开发新型神经系统治疗类型的影响。最后,本文将讨论纳米材料面临的所有挑战以及将有助于他们在这个广阔领域的未来发展的所有承诺。
藻类的食物和可再生生物燃料的驯化仍然受到光合作用的低效率的限制,这些过程已经进化为具有最佳光捕获的竞争力,激励在光线限制条件下开发大型天线,从而降低了在培养的培养型或光学物质中的效率下降。减少颜料含量以提高生物量生产力已成为一种讨论的策略,几十年来,由于广泛使用基因组编辑工具的广泛使用,现在手头可以完全减少色素。picochlorum celeri是生长最快的海洋藻类之一,对户外种植有特别的希望,尤其是在盐水水和温暖的气候中。We show that while chlorophyll b is essential to sustain high biomass productivities under dense cultivation, removing Picochlorum celeri ' s main carotenoid, lutein, leads to a decreased total chlorophyll content, higher a/ b ratio, reduced functional LHCII cross section and higher maximum quantum ef fi ciencies at lower light intensities, resulting in an incremental increase in biomass productivity and increased par到生物量转换效率。这些发现进一步加强了改善藻类光合作用效率和生物量生产的现有策略。
摘要:由于人为影响,有害的藻类和蓝细菌花朵在淡水系统中的频率和强度增加,例如在流域中的养分负荷以及天然水道的工程变化。有多种物理因素影响淡水系统中的条件,这有助于有害藻类和产生毒素的蓝细菌的最佳栖息地。越来越多的研究表明,气候变化应激源还会影响水体状况,这些条件有利于有害的藻类和蓝细菌,而不是其他浮游植物。这些生物的过度生长或“开花”增加了人类,伴侣动物,牲畜和野生动植物接触毒素的机会。随着水的温暖和降水模式随着时间的流逝而变化,预计暴露于这些花朵会增加。因此,重要的是,各州和部落制定监控和报告策略以及协调政府政策,以保护其管辖范围内的公民和生态系统。目前,为监测和报告有害藻类和蓝细菌开花所采取的政策和方法在各州之间差异很大,如果有任何部落有针对有害藻类开花的特定政策,则尚不确定。本文综合了对美国内陆淡水系统中藻类开花的研究。本综述研究了气候变化如何促进开花频率或严重程度的趋势,并概述了各州和部落可能用来监测,报告和响应有害藻类和蓝细菌的方法。
抽象硅藻在水生环境中是突出的,高度多样的微藻。与其他硅藻物种相比,三角肌是一种“非典型硅藻”,显示出三种不同的形态型,缺乏通常的二氧化硅壳。尽管生态相关性有限,但其在实验室和众所周知的生理学方面的增长便利,以及基于基因组的信息的稳定不断增长,再加上有效的操纵基因表达的工具,意味着它作为对diTOMS的分子研究的强大实验模型获得了越来越多的认识。在这里,我们简要概述了过去25年中的三角菌如何与硅藻生物学基本方面的揭幕,同时也成为藻类工艺工程和合成生物学的新工具。
仅用于研究使用。不适用于诊断程序。有关当前认证,请访问thermofisher.com/certifications©2023 Thermo Fisher Scientific Inc.保留所有权利。除非另有说明,否则所有商标都是Thermo Fisher Scientific及其子公司的财产。AN54658_E 11/23M
生物过滤是一种使用生物反应器降解和去除污染物的机制。这个概念仅限于固体液体和气态污染物。在本章中的重点更多地是消除废水污染物。该研究表明,生物过滤过程已用于治疗市政废水处理,然后是浸出液,以及各种工业废水,例如,纺织品,乳制品,食品加工,贝克的酵母,酵母,纸浆和纸张。在这些研究中,使用单列生物学生物过滤,生物活化的碳过滤器,测序生物过滤器或多阶段生物过滤过程的碳/生物活化碳过滤器或经济化的技术,在有氧/厌氧条件下报告了高碳,氮和磷参数。废水。本章重点介绍了一系列生物过滤系统及其在致病性微生物的去除效率上。本综述旨在对生物过滤技术及其在处理废水处理的基本了解。本章还讨论了多种生物过滤器的应用,例如厌氧,有氧,细菌,藻类和造物营养生物过滤器在污水处理中。