本研究考虑了生物精炼的关键阶段,研究了大型藻类(Ulva ohnoi)的潜在循环经济方法。研究和报道了生物质干燥、生物炭生产(热解)和应用生物炭除磷等重要阶段。值得注意的是,将大型藻类生物质从平均湿基含水量约 70-85% 干燥至适合热转化的含水量约 10% 是一项艰巨的任务。对生物质和生物炭的物理化学性质进行了表征,并将其与它们吸附磷 (P) 的能力相关联。大型藻类生物质的初步热分析表明,主要重量损失发生在 150 至 550°C 之间。热解过程动力学表明需要 232 至 836 kJ mol − 1 之间的更高表观活化能。当热解过程的温度升高时,可以发现生物炭的孔径、表面积和孔体积增加。在批量实验中,在 700°C 下获得的生物炭的 P 吸附量最高(78 mg-P/g 生物炭),这可能是由于碱金属和碱土金属的可用性。拟二级模型很好地描述了 P 吸附的动力学研究。由大型藻类生物质生产的生物炭可被视为对环境有益且低成本的磷回收吸附剂。吸附后的生物炭由于含有大量的磷磷石,可在农业中用作缓释肥料。
气体交换;细胞呼吸 - 糖酵解,发酵(厌氧),TCA循环和电子传输系统(有氧);能量关系 - 产生的ATP分子数量;两性途径;呼吸商。植物生长调节剂 - 陶氏素,gibberellin,cytokinin,乙烯,ABA;种子休眠;春光周期。碳水化合物,脂质,蛋白质,核酸和酶(16%)单糖家族:醛糖和酮,三位糖,四分之一,五齿和己糖。葡萄糖和果糖的呋喃糖和吡喃糖形式。二糖;减少和非还原糖的概念,麦芽糖,乳糖和蔗糖的Haworth投影。多糖,储存多糖,淀粉和糖原。结构多糖,纤维素,肽聚糖。定义和主要类别的存储和结构脂质。存储脂质。脂肪酸:结构和功能。必需脂肪酸。三酰基甘油结构,结构脂质。磷酸甘油酯:构建基块,一般结构。氨基酸,蛋白质的组成部分。氨基酸的一般公式和zwitterion的概念。蛋白质结构:初级,次级,第三和第四纪结构。核苷酸,DNA和RNA的螺旋;分子生物学中央教条的简要概念。 酶的分类。 apoenzyme,辅酶,修复组,辅因子。 酶的结构。 酶的作用机理:活性位点,激活能,过渡状态复合物。核苷酸,DNA和RNA的螺旋;分子生物学中央教条的简要概念。酶的分类。 apoenzyme,辅酶,修复组,辅因子。 酶的结构。 酶的作用机理:活性位点,激活能,过渡状态复合物。酶的分类。apoenzyme,辅酶,修复组,辅因子。酶的结构。酶的作用机理:活性位点,激活能,过渡状态复合物。多烯酶复合物:丙酮酸脱氢酶; Isozyme: lactate dehydrogenase Microbial growth in response to environment (4%) - temperature (psychrophiles, psychrotrophs, mesophiles, thermophiles, thermodurics), pH (acidophiles, alkaliphiles), solute and water activity (halophiles, xerophiles, osmophiles), oxygen (aerobes, anaerobes, microaerophilic, facultative飞氧,兼性厌氧菌),静水压力(男性)。对营养和能量的响应微生物生长 - 自养/光营养,异育;光学组织,化学硫代基因营养素:化学硫代植物,化学硫代骨骼营养,化学果蝇营养,光载体促营养。人类生理学(7%)消化和吸收:消化道和消化腺;消化酶和胃肠道激素的作用;蠕动,消化,吸收和吸收蛋白质,碳水化合物和脂肪。呼吸和呼吸:动物中的呼吸器官(仅回忆);人类的呼吸系统;呼吸机制及其在人类中的调节 - 气体的交换,气体的运输以及呼吸的调节,呼吸量;与呼吸哮喘,肺气肿,职业呼吸系统疾病有关的疾病。排泄物及其消除:排泄模式 - ammenotelism,犹太人主义,乌瑞特主义;人类排泄系统 - 结构和功能;尿形成,渗透调节;调节肾脏功能 - 肾素 - 血管紧张素,心房纳地酸因子,ADH和糖尿病肌肉症;其他器官在排泄中的作用;疾病 - 尿毒症,肾衰竭,肾脏骨化,肾炎;透析和人造肾脏。
报告显示,截至 2019 年,马来西亚每年平均产生约 100 万吨塑料垃圾。全球研究人员广泛研究了各种来自天然和合成来源的可生物降解材料。在这些天然生物基生物聚合物中,大型藻类(例如海藻)近年来引起了广泛关注,因为与其他陆生植物相比,它具有多种优势。海藻的生长速度比陆生植物快 30 倍。海藻含有独特的藻胶,可以形成凝胶,但不幸的是,海藻的亲水性阻碍了其在应用上的进步。海藻生物聚合物的亲水性可以通过物理、机械和化学方法显著增强。使用伽马射线的物理技术证实了基质和填料之间的分子间键合增强,这有助于改善表面疏水性。通过添加有机生物填料,还可以利用机械技术来增强海藻生物聚合物的性能。同时,使用偶联剂处理(例如硅烷)的化学处理有助于修改羟基官能团以降低海藻生物聚合物的亲水性。一般来说,所有这些技术都增强了薄膜的拉伸、热和防水性能。这反过来又扩展了海藻在特殊应用中的可行性,例如农业覆盖、干粮和非食品包装。更多的研究包括海藻在生物医学应用中的应用,已经进行了广泛的研究。之所以选择海藻,是因为其可用性和可生物降解性。本次讲座首先批判性地强调了传统塑料、生物基塑料的最新问题以及大型藻类材料相关的挑战。之后,本次演讲重点介绍了我们为解决这一问题而进行的研究工作,这些研究工作采用了不同的修改和工艺技术。充分展示了加工材料及其潜在应用的确凿证据。关键词:大型藻类;绿色材料;生物聚合物;可持续包装;纤维素纤维。
• 初始 PI 启动 • 任务工作组 • 每月两次的 PI 电话会议 • 每月两次的团队电话会议,以共享数据、评估任务进度、讨论缓解策略 • 项目监控(每 6 周与项目监控人员通话一次、季度报告、中期验证) • 风险控制(风险缓解矩阵)和变更控制流程
1. 藻类生物量生产力 o M. gaditana 菌株的生物量生产力提高 20%,将显著提高 2030 年 25 克/立方米/天的目标生产力 o 户外使用可能还需要做出额外努力: 批准避免重组蛋白的转基因生物或突变方法 扩大规模测试 SNL 温室中的 100 升微型跑道池 o 遗传目标还可以通过减少暗损失来提高其他藻类菌株的生物量生产力
11:30 AM 11:55 AM 0:25 LEAF: Leveraging Algae Traits for Fuels SNL Amanda Barry 1.3.2.043 AOP 11:55 AM 12:00 PM 0:05 Logistics R&D overview BETO Christy Sterner 12:00 PM 12:25 PM 0:25 Algal Feedstocks Logistics and Handling INL Brad Wahlen 1.3.3.100 AOP 12:25 PM 12:30 pm 0:05转换界面概述beto christy sterner
全球对塑料材料的需求增加导致严重的塑料废物污染,尤其是对海洋环境的污染。这个关键问题会影响海洋生物和人类,因为微塑料可以进入食物链并造成几种健康影响。塑料回收,化学处理,焚化炉和土地填充显然不是减少塑料污染的最佳解决方案。因此,本综述提出了两种新近识别的环保方法,使用藻类的塑料生物降解和生物塑性生产,以解决增加的全球塑料废物。藻类,尤其是微藻,可以通过微藻本身合成的毒素系统或酶来降解塑料材料,同时使用塑料聚合物作为碳源。利用藻类进行塑料生物脱粒化,在本文中进行了严格的审查,以证明机制以及微塑料如何影响藻类。另一方面,藻类衍生的生物塑料具有与基于石油的塑料相同的特性和特性,而本质上则非常可生物降解。本综述为产生基于藻类的生物塑料的不同方法提供了新的见解(例如,与其他材料和基因工程融合),然后讨论挑战和进一步的研究方向以提高其商业可行性。©2020作者。由Elsevier B.V.代表中国环境科学研究所,中国环境科学学院出版。这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
摘要如今,癫痫是慢性严重神经系统疾病之一。它已在大脑信号分析的帮助下被识别。借助电皮质学(ECOG),脑电图(EEG)记录大脑信号。来自大脑信号,大脑功能异常是一项更具挑战性的任务。传统系统正在消耗更多时间来预测异常的大脑模式。因此,在本文中,有效的生物启发的机器学习技术可用于以最大的识别精度从脑电图信号中预测癫痫发作。最初,通过将电极放在头皮上来收集患者脑图像。从大脑信号中,提取了不同的特征,这些特征在选择最佳特征的磷虾群算法的帮助下进行了分析。使用人工藻类优化的一般对抗网络处理所选功能。网络识别复杂和异常的癫痫发作模式。然后检查了讨论的最新方法的模拟结果。
致谢 作者感谢以下研究人员对这项工作的贡献:美国国家可再生能源实验室 (NREL) 的 Lieve Laurens、Phil Pienkos、Eric Knoshaug、Tao Dong、Jake Kruger、Nick Nagle、Yat-Chen Chou、Christopher Kinchin、Bruno Klein 和 Zia Abdullah;爱达荷国家实验室 (INL) 的 Lynn Wendt、Brad Wahlen;以及重塑可再生能源藻类碳能量学 (RACER) (BETO 资助) 项目的其他合作伙伴。本报告根据这些研究人员提供的意见,概述了用于更新 NREL 技术现状 (SOT) 基准模型的关键单元操作的研究数据;然而,它并非旨在详尽总结所有研究活动、方法或数据输出,我们将参考这些研究人员和其他人的研究工作来提供进一步的背景信息。
该计划的目标是为社区提供减少有毒藻类的路线图。湖泊社区现在需要共同决定实施计划的益处是否值得投入所需的资金和时间。建议的下一步是让来自洛玛湖社区的志愿者组成一个湖泊修复委员会。委员会可以审查该计划并向更广泛的社区提出前进的道路以供他们批准。需要决定的重要决策点包括:1) 实施的计划要素 2) 首选的资金替代方案 3) 时间表和 4) 实施角色。虽然这似乎需要付出巨大的努力,但其他当地湖泊社区已经成功驾驭了这一过程,并改善了当地湖泊的健康状况。
