苦味酸 ( CAS 编号 88-89-1,2,4,6-三硝基苯酚,苦味硝酸 ) 是一种淡黄色、无味晶体,微溶于水(约 1.3% 重量浓度时达到饱和)。在实验室外,苦味酸主要用于炸药和烟花。在实验室中,它用于组织学应用的许多常见固定剂中。Bouin 溶液、Holland 溶液和 Gendre 溶液的主要成分都是苦味酸。在金相学应用中,苦味酸用作镁及其合金的蚀刻剂。水合后,苦味酸可以安全处理,但干燥后可能会引起爆炸。互联网上有许多拆弹小组拆除旧苦味酸瓶的报道。它也是一种有毒物质。苦味酸造成的危害要求在储存和处理时采取特殊的预防措施和做法,如下所述。
没有任何材料不能用技术等离子处理。这意味着非极性塑料甚至 PTFE 都适合粘合。通常需要使用非常腐蚀性的化学品才能通过其他方式实现类似的表面效果。等离子处理对环境没有任何负面影响。腐蚀性介质仅存在于等离子体中。一旦关闭等离子体,它们就会消失。等离子处理仅影响表面。因此,热敏感材料和生物体(种子、人体)也可以进行处理。等离子处理效率高。无需花费化学品的储存和处置、保护措施、蚀刻剂去除或干燥费用。等离子处理还适用于机械处理或液体化学化合物无法到达的地方,例如腔体、底切和间隙。由于等离子体能够以原子精度工作,因此可以生产和处理间隙小于一微米的结构。同样,可以生产或去除这种尺寸的封闭层。
没有任何材料不能用技术等离子处理。这意味着非极性塑料甚至 PTFE 都适合粘合。通常需要使用非常腐蚀性的化学品才能通过其他方式实现类似的表面效果。等离子处理对环境没有任何负面影响。腐蚀性介质仅存在于等离子体中。一旦关闭等离子体,它们就会消失。等离子处理仅影响表面。因此,热敏感材料和生物体(种子、人体)也可以得到处理。等离子处理效率高。无需花费化学品的储存和处置、保护措施、蚀刻剂的去除或干燥费用。等离子处理还适用于机械处理或液体化学化合物无法到达的地方,例如腔体、底切和间隙。由于等离子体能够以原子精度工作,因此可以生产和处理间隙小于一微米的结构。同样,可以生产或去除这种尺寸的封闭层。
内容总小时数 1 非常规加工工艺:基于机械能的工艺磨料喷射加工(AJM)、水射流加工(WJM)、磨料水射流加工(AWJM)、超声波加工(USM)。工作原理 – 所用设备 – 工艺参数 – MRR- 应用。基于电能的工艺电火花加工 (EDM) – 工作原理- 所用设备- 工艺参数 - 表面光洁度和 MRR - 电极/工具 – 电源和控制电路 - 工具磨损 – 电介质 – 冲洗 – 线切割 EDM – 应用。基于化学和电化学能量的工艺化学加工和电化学加工 (CHM 和 ECM) - 蚀刻剂 – 掩蔽剂 - 涂抹掩蔽剂的技术 - 工艺参数 – 表面光洁度和 MRR - 应用。ECM 原理 - 设备- 表面粗糙度和 MRR 电路 - 工艺参数- ECG 和 ECH - 应用。基于热能的工艺激光束加工和钻孔 (LBM)、等离子弧加工 (PAM) 和电子束加工 (EBM)。原理 – 设备 – 类型 - 光束控制技术 – 应用。
摘要。湿法蚀刻是大规模生产微电子和纳米电子器件的关键制造步骤。然而,当在蚀刻过程中使用腐蚀性极强的酸(如氢氟酸)时,如果器件包含与该酸不兼容的材料,则可能会发生不良损坏。聚酰亚胺薄膜可用作牺牲/结构层来制造独立或柔性器件。聚酰亚胺在微电子中的重要性在于其相对较低的应力和与标准微加工工艺的兼容性。在这项工作中,展示了一种从硅基板上快速剥离 4 µ m 厚聚酰亚胺薄膜的工艺。薄膜的剥离是使用湿基 HF 酸蚀刻剂进行的。具体而言,研究了 HF 浓度对从基板上剥离聚酰亚胺薄膜所需剥离时间的影响。本研究旨在提供有关使用聚酰亚胺薄膜与 HF 的兼容性的信息,这有助于设计和制造基于聚酰亚胺的器件。
* 通讯作者:moises.garin@uvic.cat 我们报告了一种通过在纳米颗粒/基底界面的弯月面中毛细管冷凝在纳米尺度上局部输送气相化学蚀刻剂的方法。该过程简单、可扩展且不需要对纳米颗粒进行功能化。此外,它不依赖于材料的任何特定化学性质,除了溶液是水性的和所涉及表面的润湿性之外,这应该使其能够应用于其他材料和化学品组合。具体而言,在这项工作中,我们通过使用暴露于 HF 蒸汽的自组装单层聚苯乙烯颗粒定期对 SiO 2 层进行图案化来演示所提出的工艺。然后使用图案化的 SiO 2 层作为掩模来蚀刻 Si 中的倒置纳米金字塔图案。已经证明了硅纳米图案化适用于从 800 nm 到 100 nm 的颗粒尺寸,对于 100 nm 纳米颗粒,实现了尺寸小至 50 nm 的金字塔。
摘要 电池和超级电容器已成为下一代储能技术的有希望的候选者。新型二维 (2D) 电极材料的快速发展预示着储能设备新时代的到来。MXenes 是一种新型的层状二维过渡金属碳化物、氮化物或碳氮化物,由于其优异的电导率、电化学和亲水性能、大的表面积和吸引人的拓扑结构而备受关注。本综述重点介绍了使用和不使用蚀刻剂(如氢氟酸、氟化锂和盐酸)去除 MAX 相的“A”层来制备碳化钒 MXenes 的各种合成方法。目标是展示利用毒性较小的蚀刻方法来实现与传统方法制备的 MXenes 具有可比性能的 MXenes。本综述还讨论了插层对 MXene 层之间高层间距的影响以及 MXenes 作为超级电容器和电池电极的性能。最后,讨论了目前对碳化钒 MXenes 在合成、可扩展性和在更多储能设备中的应用方面的知识存在的差距。
光纤维介于最常见的植入剂范围内,用于在神经系统中发光,用于光学集和红外神经刺激应用。逐渐变细的操作纤维可以提供均匀的光输送到大容量和空间分辨的照明,同时最少具有侵入性。然而,现在使用锥度用于神经应用的目前仅限于二氧化硅光纤维,其较大的年轻人的模型可能会在慢性设定中引起有害的异物反应。在这里,我们介绍了基于聚合物光纤维(POFS)的植入植入物的制造和优化。After numerically determining the optimal materials and taper geometry, we fabricated two types of POFs by thermal fiber drawing.通过化学蚀刻剂的化学蚀刻来实现锥度的制造,为此,已经测试过文献中的几种溶剂。还研究了不同参数对蚀刻过程和所获得的锥度质量的影响。在脑幻像中最终测试了产生的高质量基于锥度的植入物的大量照明体积。
电子异质结构的微图案化主要依赖于洁净室环境中的传统微加工技术,其多个步骤涉及电子材料的旋涂以及光刻和蚀刻步骤。 3 该技术耗时且昂贵,并且蚀刻步骤对于某些有机导体来说是决定性的。蚀刻剂和抗蚀剂的残留物也会影响生物相容性。此外,很难在任意基板(例如柔性材料)上进行光刻。另一种不涉及微加工的技术是印刷,例如喷墨 4 或丝网印刷。 5 对于丝网印刷,必须为网格开发具有特殊流变性质的油墨。在喷墨打印头中,胶体颗粒的油墨经常会堵塞喷嘴。更成问题的是,很难使用任何加法印刷方法制造具有多种材料堆叠的复杂几何形状,因为添加来自水的油墨会溶解并改变之前的层。 3D 可打印 PEDOT:PSS 墨水已开发用于与其他非导电可打印材料结合形成复杂几何图形,但这些过程依赖于耗时的机制,例如低温冷冻、冻干和干退火。6
摘要。氧化硅基材料(例如石英和二氧化硅)被广泛用于微机电系统(MEMS)。增强其深等离子体蚀刻能力的一种方法是通过使用硬面膜来提高选择性。尽管以前研究了这种方法,但有关在200 mM底物上使用硬面膜来蚀刻基于硅氧化物材料的信息很少。我们提出了使用Al和Aln掩模的无定形氧化硅蚀刻过程开发的结果,并展示了用于蚀刻二氧化硅和石英的结果。在具有两个血浆源的工业反应性离子蚀刻室(RIE)室中比较了三个气体化学(C 4 F 8 /O 2,CF 4和SF 6)及其混合物。已经确定,纯SF 6是最好的蚀刻剂,而ALN比Al更好地提供了较高的选择性和靠近垂直的侧壁角度。建立了无微量蚀刻的一系列蚀刻参数,并使用蚀刻速率为0.32-0.36m/min的工艺在21M-厚的氧化物中创建了高达4:1纵横比的蚀刻结构,并且对(38-49)的Aln Mask的选择性为0.32-0.36m/min。