基因选择性转录因子通过与其靶基因调节区域内的特定DNA元件结合(1)。但是,并非完全定义此DNA结合的序列要求。几个参数,例如蛋白质 - 蛋白质相互作用与相邻结合的因素,DNA结构的影响(弯曲等)。),重要的是,结合位点与认知因子的比率确定给定转录因子是否可以有效地与相应的结合位点相互作用。体外和大概也在体内也是如此,对于确定转录因子是否会与其最佳识别序列的变体结合,因此,它的基因调节。在这些考虑因素中提示,我们询问是否存在一种蜂窝机制,该机制是否存在在转录因子活动和可用目标位点的繁琐之间保持平衡。对AP-1家族成员的特征良好转录因子C-Jun进行了实验(2-4)。包含AP-1结合位点的启动子是C-Jun调节的目标。C-Jun的活性受到多种机制的紧密控制,并且对蛋白质的异常调节会导致恶性转化和致癌作用(5)。在这项研究中,我们描述了一种机制,该机制通过改变其磷酸化态的DNA结合活性,取决于细胞中存在的C-Jun结合位点的浓度。这种机制可以用来设置和微调C-Jun与其结合位点的比率。有趣的是,与这种现象有关的磷酸化位点与以前据报道经历信号依赖性去磷酸化相同。
摘要 ◥ 纤维连接蛋白的额外结构域 B 剪接变体 (EDB + FN) 是一种由肿瘤相关纤维母细胞沉积的细胞外基质蛋白 (ECM),与肿瘤生长、血管生成和侵袭有关。我们假设 EDB + FN 是使用抗体-药物偶联物 (ADC) 进行治疗干预的安全且丰富的靶点。我们描述了针对 EDB + FN (EDB-ADC) 的 ADC 的产生、药理学、作用机制和安全性概况。EDB + FN 广泛表达于胰腺癌、非小细胞肺癌 (NSCLC)、乳腺癌、卵巢癌、头颈癌的基质中,而在正常组织中则受到限制。在患者来源的异种移植 (PDX)、细胞系异种移植 (CLX) 和小鼠同源肿瘤模型中,EDB-ADC 通过位点特异性技术与 auristatin Aur0101 结合,表现出强效的抗肿瘤生长抑制作用。在
在微级量表上控制pH值可能对研究,医学和行业的应用很有用,因此代表了合成生物学和微流体的宝贵应用。提出的囊泡系统将不同的颜色转化为周围溶液中特定的pH值变化。它可以与两个轻驱动的质子泵细菌紫红质和蓝色的光吸收蛋白淡淡的蛋白质Med12一起使用,它们在脂质膜上以相反的方向定向。计算机控制的测量设备实现了一个反馈循环,以自动调整和维护所选的pH值。可以建立跨越两个单元的pH范围,从而提供时间和pH分辨率。作为一个应用示例,呈pH敏感的酶反应,在浅色控制反应进展的情况下。总而言之,使用工程蛋白质体的浅色控制的pH调节为在微级别的不同情况下(例如合成生物学应用中)打开了新的可能性,以在微层尺度上控制过程。
摘要 我们介绍了一系列关于 G 蛋白偶联受体 (GPCR) 遗传学和药物遗传学的三篇文章。在第一篇文章中,我们讨论了与人类表型相关的 G 蛋白亚基和辅助蛋白的遗传变异;在第二篇文章中,我们在此基础上讨论了“G 蛋白偶联受体 (GPCR) 基因变异和人类遗传疾病”,在第三篇文章中,我们概述了“G 蛋白偶联受体药物基因组学”。在本文中,我们将在由辅助蛋白和 G 蛋白的致病变异导致的人类遗传疾病的背景下,回顾配体结合、GPCR 活化、失活以及受体运输到膜的过程。在不同表型中检查了编码 G 蛋白 α 和 β 亚基的基因的致病变异。编码修饰或组织 G 蛋白偶联的辅助蛋白的基因变异与疾病有关;这些包括 G 蛋白信号调节器 (RGS) 变异对高血压的贡献; G 蛋白信号传导激活剂 III 型变体在缺氧等表型中的作用;RGS10 基因变异对身材矮小和免疫功能低下的影响;以及 G 蛋白偶联受体激酶 (GRK) 变体(如 GRK4)在高血压中的作用。本文概述了编码参与 GPCR 信号传导的蛋白质的基因变异,这些变异可能与人类表型相关的结构和功能变化。
Background: With recent advances in clinical practice, including the use of reduced-toxicity conditioning regimens and innovative approaches such as ex vivo TCR ab /CD19 depletion of haploidentical donor stem cells or post- transplant cyclophosphamide (PTCY), hematopoietic stem cell transplantation (HSCT) has emerged as a curative treatment option for a growing population of patients with inborn errors免疫力(IEI)。但是,尽管这些有希望的发展,但在这些患者中,移植失败(GF)仍然与HSCT相关。尽管第二个HSCT是唯一针对经历GF的患者的固定的打捞疗法,但没有进行这些第二次移植的统一标准化策略。此外,当第二次HSCT无法实现植入时,关于第三HSCT的结果和最佳实践的数据甚至更少。
摘要在正常生长过程中,在培养的小鼠成纤维细胞(L-929细胞)中,在培养的小鼠成纤维细胞(L-929细胞)中,在其他条件下以及导致酶活性增加的培养小鼠成纤维细胞(L-929细胞)中,已使用一种对大鼠胶原蛋白羟化酶的特异性抗体。胶原蛋白羟化酶活性每毫克细胞蛋白的活性增加了24倍,因为细胞通过对数发展到生长的固定阶段,而免疫反应性蛋白的细胞融合仅略有变化。在早期对数阶段的细胞中获得了相似的结果,其中通过细胞浓度或乳酸处理刺激酶活性,而没有相应的细胞抗原变化。还显示,这些成纤维细胞中的酶无活性抗原有效地竞争了具有部分纯化酶的抗体结合位点。可以得出结论,早期含量的成纤维细胞包含一种胶原蛋白脯氨酸羟化酶的非活性形式,这可能是功能性酶的前体。
摘要 蛋白质的正确折叠对于维持功能性活细胞至关重要。因此,蛋白质的错误折叠和聚集与多种疾病有关,其中非天然分子间相互作用形成具有低自由能的大型高度有序的淀粉样蛋白聚集体。一个例子是阿尔茨海默病 (AD),其中淀粉样蛋白-β (Aβ) 肽聚集成淀粉样蛋白原纤维,这些原纤维在 AD 患者的大脑中沉积为神经斑块。淀粉样蛋白原纤维的成核是通过形成较小的成核前簇(即所谓的低聚物)进行的,这些低聚物被认为具有特别的毒性,因此在 AD 病理学中具有潜在重要性。Aβ 聚集的详细分子机制知识对于设计针对这些过程的 AD 治疗非常重要。然而,由于低聚物物种的丰度低且多分散性高,因此很难通过实验研究它们。本文使用自下而上的生物物理学在受控的体外条件下研究了 Aβ 低聚物。主要使用天然离子迁移质谱法研究高纯度重组 Aβ 肽,以监测水溶液中低聚物的自发形成。质谱法能够分辨单个低聚物状态,而离子迁移率则提供低分辨率结构信息。这与其它生物物理技术以及理论建模相辅相成。还研究了调节内在因素(如肽长度和序列)或外在因素(如化学环境)的低聚物。研究了与两个重要的生物相互作用伙伴的相互作用:伴侣蛋白和细胞膜。我们展示了 Aβ 低聚物如何组装并形成可能与继续生长为淀粉样蛋白原纤维有关的延伸结构。我们还展示了不同的淀粉样蛋白伴侣蛋白如何与不断增长的聚集体相互作用,从而改变和延迟聚集过程。这些相互作用取决于伴侣和客户肽中的特定序列基序。另一方面,膜模拟胶束能够稳定 Aβ 寡聚体的球状致密形式,并抑制形成淀粉样纤维的延伸结构的形成。这可能有助于体内毒性物质的富集。与膜模拟系统的相互作用被证实高度依赖于 Aβ 肽异构体和膜环境的特性,例如头部电荷。还展示了如何添加设计的小肽结构来抑制膜环境中 Aβ 寡聚体的形成。
婴儿在不再有意义的情况下,通过坚持不懈,重复习惯行为的持久,重复习惯行为表现出缺乏灵活性。例如,一旦婴儿搜索出现的玩具,然后隐藏了一个玩具,他们会坚持不懈地搜索,在看着玩具隐藏在一个新位置的情况下,继续回到旧的藏匿地点(Diamond,1985; Piaget,1954年)。当对象在其面前完全可见时,婴儿甚至会坚持不懈。例如,当面对两条毛巾时 - 一个带有遥远的玩具,一个带有玩具的毛巾 - 婴儿会选择带有玩具的毛巾。但是,如果毛巾是切换的,以便将毛巾放在婴儿左边的毛巾(例如,带有玩具上的毛巾)现在是在婴儿的右边,婴儿坚持不懈,继续将毛巾拉到以前的一侧,尽管它没有产生玩具(Aguiar&Baulargeon,2000年)。
免疫学家需要在六个月时进行初步检查,并至少每年进行一次持续检查以评估临床益处。临床有效性的记录对于继续免疫球蛋白治疗是必要的。应至少在治疗 12 个月后考虑停止免疫球蛋白治疗。如果血清 IgM 和 IgA 水平呈上升趋势并接近正常水平,这可能表明免疫系统正在恢复,如果患者身体健康,可以考虑进行试验。一旦患者的 IgA 和 IgM 水平恢复正常,IgG 也可能恢复正常,可以进行停药试验。应根据需要延长免疫球蛋白治疗,以便在 9 月/10 月停止治疗,并在重新开始治疗之前重复临床和/或免疫学评估。对于没有活动性支气管扩张和/或化脓性肺病的患者,尤其应考虑这一点。需要 4 至 6 个月的免疫球蛋白清除期才能进行准确评估。可以考虑使用预防性抗生素来覆盖免疫球蛋白治疗停止的时期。