经常认为传粉媒介健康的下降是多种相互作用的生物和非生物压力源的综合结果。也就是说,营养限制,农药暴露以及病原体和寄生虫感染。尽管有这一假设,但大多数检查压力源相互作用的研究都被限制在两个并发因素上,从而限制了我们对多压力动力学的理解。使用蜜蜂作为模型,我们通过研究可变饮食,多种农药的野外现实水平以及病毒感染相互作用以影响生存,感染强度以及免疫和解毒基因表达来解决这一差距。尽管我们发现证据表明农业化学暴露(毒性里利和两种杀真菌剂的野外混合物)会加剧感染并增加病毒诱导的死亡率,但这种结果是营养依赖性的,只有在提供人工花粉时才发生。与自然收获的多性花粉倒置的供应倒置,降低了病毒诱导的死亡率并提出了激烈的反应。为了测试该反应是否特定于农药,我们重复了使用拟除虫菊酯(Lambda-Cyhalothrin)和新烟碱(Thiamethoxam)的实验,发现了可变结果。最后,为了了解这些作用的基础,我们测量了重要的免疫和解毒基因的病毒载量和表达。一起,我们的结果表明,多应激源相互作用是复杂的,高度依赖于上下文,但具有影响蜜蜂健康和生理学的巨大潜力。
宿主 - 微生物相互作用是包括蜜蜂在内的许多宏观生物的发展和适应性的基础。尽管许多社会蜜蜂受益于垂直传播的肠道细菌,但当前的数据表明,孤立的蜜蜂构成了蜜蜂中绝大多数物种多样性,但缺乏高度专业的肠道微生物组。在这里,我们研究了整个野生蜜蜂bonthophora bomboides Standfordiana的整个生命周期中细菌和真菌的成分和丰度。与期望相反,未成熟的蜜蜂阶段保持了一个独特的核心微生物组,该核心体由静脉细菌属(链霉菌,诺卡氏菌)和真菌Moniliella spathulata组成。休眠(尿布)幼虫蜜蜂占据了最丰富,最独特的细菌和真菌,分别达到其初始拷贝数的33和52倍。我们测试了关于尿布蜜蜂的微生物功能的两个自适应假设。首先,使用孤立的细菌和真菌,我们发现来自育雏细胞的链霉菌抑制了多种致病性丝状真菌的生长,这表明当蜜蜂面对高病原体压力时,在越冬期间在病原体保护中起作用。第二,糖酒精成分随着真菌丰度的重大变化而变化,这表明与蜜蜂冷耐受性或越冬的生物学有联系。我们发现,炸弹抗体有一个保守的核心微生物组,可以通过幼虫的发育和滞育提供关键的适应性优势,这提出了一个问题,即如何维持和忠实地传播这种微生物组。我们的结果表明,关注成熟或活跃的昆虫发育阶段的微生物组可能会忽略宿主休眠期间特定阶段的共生体和微生物适应性的贡献。
beehave是一个典型的高分辨率生态模型:它的空间范围相对较小。它仅表示一个蜂巢周围的景观,即5 x 5km²。因此,它不能用于评估蜜蜂及其在各个地区,国家或其他地区的栖息地的状况。Beehave的现有工作流程依赖于周围景观中田野和农作物的地图,这些田地和农作物很少可用,并且数据以测试菌落表现的模型预测的数据。Beehave已在25多个研究中使用(Suppl。材料1),但它用于支持国家或欧洲一级的政策制定。这些政策包括欧洲社区共同农业政策(CAP)的重要方面。支持制定此类政策,同时还可以帮助农民和养蜂人及其协会发展可持续和生物多样性的实践,有必要将Beehave的范围和预测能力扩展到数字双胞胎(DT),并考虑到为生物多样性保存而发展的特定挑战(DT)2023)。数字双胞胎使我们能够以一致的方式申请Beehave,从当地特定地点应用到国家范围。
Deborah Ruth Amulen接受了解决这一知识差距的任务。,她获得了联邦分裂地点奖学金,2013年在班戈大学(Bangor University)度过一年的研究,并于2017年获得了应用生物科学博士学位。她专注于开发参与式方法,以改善乌干达北部的蜂蜜产量。她是Makerere大学兽医学院,动物资源与生物安全学院(COVAB)的牲畜和工业资源系讲师。她现在是昆虫研究领域的主要专家之一,并领导了热带疾病和媒介控制研究中心的研究小组(RTC),在那里她负责Covab的RTC授粉媒介保护和昆虫研究(RTC-PRI)小组。她还建立了昆虫研发中心(CIRD),该中心的重点是使用蜜蜂和黑色士兵层作为帮助改善生计和粮食安全的工具。
对它们的生存和蜂蜜产生至关重要。因此,蜜蜂存在于他们可以使用花卉资源的地区。此外,在选择养蜂场的位置时,必须考虑蜜蜂的食物来源(花蜜/花粉)的可用性。昆士兰州地区生态系统数据库包含有关特定生物区域中植被群落的信息。区域生态系统是指生物区域中的植被群落,该植被群落始终与地质,地面和土壤的特定组合相对应(Sattler&Williams,1999)。因此,该数据库是确定适合特定生态系统中蜜蜂的花样的绝佳资源。Tennakoon等人用来评估区域生态系统的方法相同。(2023)在本研究中使用
抽象的社会昆虫,例如蚂蚁,白蚁和蜜蜂,已经发展出了复杂的社会,在这些社会中,协作和分裂的劳动分工增强了整个殖民地的生存,因此被认为是“超生物”。从历史上看,在自然条件下研究涉及大型群体的行为提出了重大挑战,通常会导致在人工实验室条件下进行有限数量的生物体的实验,而这些生物会无法完全反映动物的自然栖息地。一种有前途的探索动物行为的方法,超出了观察,正在使用产生刺激的机器人技术与动物相互作用。但是,在实验室条件下,他们的应用主要受到小组的约束。在这里,我们介绍了一个生物相容性的机器人系统的设计选择和开发,该系统旨在与该领域的完整蜜蜂菌落整合在一起,从而通过热传感器和驱动器来探索其集体热调节行为。我们测试了该系统捕获两个关键集体行为的时空特征的能力。一个121天的观察表明,在觅食季节,育雏区域的温度调节活性,然后在冬季进行聚类行为。然后,我们通过两个机器人框架发出的局部热刺激来指导沿着非天然轨迹的蜜蜂来影响菌落的能力。这些结果展示了一个系统,该系统能够从内部调节蜜蜂菌落,并在长时间内观察到它们的动力学。这种结合成千上万动物和互动机器人完整社会的生物杂化系统可用于确认或挑战对复杂动物集体的现有理解。
4生物识别技术和进化生物学实验室,伯纳德大学,里昂-1,法国抽象的蜜蜂是支持粮食安全和自然生物多样性的重要授粉媒介。它们也是食品,制药和化妆品行业中使用的各种蜂蜜蜜蜂衍生产品(API-Lododucts)的来源。然而,各种生物学,化学和物理因素威胁着野性和管理蜜蜂的种群和生物多样性。在巴基斯坦的背景下,这些挑战尚未得到阐述;因此,这篇综述旨在识别和描述巴基斯坦蜜蜂的野生和驯化种群的威胁。该国有四种蜜蜂物种,西部蜜蜂(Apis Mellifera)目前是主要的驯化物种。气候变化和城市化正在改变蜜蜂的栖息地。此外,农产品被广泛用于管理新兴的害虫,加剧环境污染。大多数城市地区的空气质量对蜜蜂有毒。尽管偏远的森林地区可以为这些昆虫提供栖息地和食物,但低森林覆盖物和不可持续的造林仍然是重大障碍。微塑料和抗菌药物正在影响蜜蜂的适应性,并且还会出现在其产品中,使其成为一个健康问题。电磁信号还影响蜜蜂的健康和行为。总体而言,所有这些因素都会影响蜜蜂的健康和菌落健身,最终导致托管和野生蜜蜂的人口下降。此信息的目的是协助决策者,研究人员,养蜂人和教育者在巴基斯坦的背景下理解蜜蜂人口所面临的障碍。
蜂蜜蜜蜂是探测宿主的强大模型系统 - 近距离菌群相互作用,也是自然生态系统和农业的重要传粉媒介物种。虽然细菌生物传感器可以对宿主与其相关的菌群之间发生的复杂相互作用提供批判性的见解,但缺乏非侵入性的肠道含量进行采样的方法,以及对工程师Symbionts的有限遗传工具,到目前为止,它们在蜜蜂中的发展促成了它们的发展。在这里,我们构建了一个多功能分子工具套件,以基因修改共生体,并在蜜蜂中首次报告了一种用于采样其粪便的技术。我们将天然的蜜蜂肠道细菌snodgrassella alvi作为IPTG的生物传感器,其工程细胞通过表达荧光蛋白的表达来稳定地定居于蜜蜂蜜蜂的肠道,并以剂量依赖性的方式暴露于骨骼。我们表明可以在肠道组织中测量荧光读数或在粪便中无创测量。这些工具和技术将使工程细菌的快速建立能够回答宿主 - 近距离微生物群研究中的基本问题。
多种细菌可以使用饮食营养物质或通过微生物交叉进食相互作用来定位动物肠道。对宿主衍生的营养物质在实现肠道细菌定植中的作用知之甚少。在这里,我们检查了蜜蜂(Apis Mellifera)和核心肠道微生物群Snodgrassella alvi之间进化古代共生中的代谢相互作用。这种蛋白菌无法代谢糖,但是在纯糖饮食的情况下将蜂蜜蜜蜂肠道化。使用比较代谢组学,13个C-跟踪剂和纳米级离子质谱法(纳米SIMS),我们在体内表明,S。alvi在宿主衍生的有机酸上生长,包括柠檬酸盐,甘油酸盐,甘油酸盐,3-羟基-3-羟基-3-羟基-3-甲基细胞酸盐,并在宿主中被派生为宿主,该宿主是托管的。s。alvi还通过将kynurenine转化为炭疽菌来调节肠道中的色氨酸代谢。这些结果表明,阿尔维(S. alvi)适用于蜜蜂肠道中的特定代谢生态位,该蜜蜂肠道取决于宿主衍生的营养资源。
a 蜜蜂保护研究所,Julius Kühn 研究所 (JKI) - 联邦栽培植物研究中心,德国不伦瑞克 b 进化生态学和保护基因组学研究所,乌尔姆大学,Albert-Einstein Allee 11,乌尔姆 D-89081,德国 c 动物生态学和热带生物学系,维尔茨堡大学生物中心,维尔茨堡,德国 d 图能生物多样性研究所,Johann Heinrich von Thünen 研究所,林业和渔业,联邦农村地区研究所,德国不伦瑞克 e 自然资源保护研究所,景观生态学,基尔大学,基尔 24118,德国 f 自然保护和景观生态学,弗莱堡大学环境与自然资源学院,Tennenbacher Stra ße 4,弗莱堡,79106,德国 g 生物相互作用和植物健康学部,瓦赫宁根植物研究中心, Droevendaalsesteeg 1, Wageningen 6708 PB,荷兰 h 植物-昆虫相互作用,慕尼黑工业大学生命科学学院,弗赖辛 85354,德国 i 马丁路德哈勒-维滕贝格大学生物研究所,Hoher Weg 8,哈勒(萨勒河)06120,德国 j 德国综合生物多样性研究中心(iDiv)哈勒-耶拿-莱比锡,Puschstrasse 4,莱比锡 04103,德国 k 独立研究员,柏林,德国 l 农业生态学,哥廷根大学,哥廷根,德国 m 动物学研究所,布伦瑞克工业大学,布伦瑞克,德国