无刺的蜜蜂是热带地区多样化和生态上重要的传粉媒介。劳动分裂允许蜜蜂菌落满足其社会生活的各种需求,但在所有描述的无刺蜜蜂物种中,只有3%的人进行了研究。可用的数据表明,与其他社会蜜蜂相比,劳动分工显示出相似之处和引人注目的差异。工人年龄是许多物种中工人行为的可靠预测指标,而体大小的形态变化或大脑结构的差异对于某些物种的特定工人任务很重要。无刺的蜜蜂提供了确认劳动分工的一般模式的机会,但它们也提供了前景,以发现和研究Eusocial Bees中不同生活方式的新型机制。
摘要 由于缺乏易于使用的基因组工程方法,对包括蜜蜂微生物组在内的许多宿主-微生物系统相互作用的机制理解受到限制。为此,我们展示了一种一步到位的基因组工程方法,用于在蜜蜂肠道细菌共生体的染色体中进行基因删除和插入。线性或非复制性质粒 DNA 含有抗生素抗性盒,其两侧是与共生体基因组同源的区域,电穿孔可靠地导致染色体整合。这种轻量级方法不需要表达任何外源重组机制。使用现代 DNA 合成和组装方法可以轻松产生使该过程高效所需的具有长同源区域的高浓度大 DNA。我们使用这种方法敲除基因,包括参与生物膜形成的基因,并将荧光蛋白基因插入 betaproteo 细菌蜜蜂肠道共生体 Snodgrassella alvi 的染色体中。我们还能够对 S. alvi 的多个菌株和另一种物种 Snodgrassella communis 进行基因组改造,Snodgrassella communis 存在于大黄蜂肠道微生物群中。最后,我们使用相同的方法改造另一种蜜蜂共生体 Bartonella apis 的染色体,Bartonella apis 是一种 α-变形杆菌。正如预期的那样,使用这种方法对 S. alvi 进行基因敲除依赖于 recA,这表明这种简单的程序可以应用于其他缺乏便捷基因组改造方法的微生物。
尚未实现驱虫治疗的靶向分娩,从而导致过量药物和治疗疗法的副作用。为此,使用脂质摄入作为食物来源的脂质制成了载有药物的生物相容性纳米颗粒。该制剂显示出优秀的药物(阿苯顿唑)载荷效率为83.3±6.5 mg/g,具有持续释放性能,并且在24小时内显示了86.4±3.9%的药物释放。此外,在用Haemonchus contortus摄入若丹明B负载颗粒后,在消化道中观察到染料的时间依赖性释放,然后在整个蠕虫中分布。由颗粒显示出高达50倍的阿苯达唑效力的颗粒显示肠道持续释放特性。因此,这种配方具有巨大的潜力作为驱虫药物递送车,不仅可以减少剂量,而且还可以通过增强药物的生物利用度来减少药物诱发的副作用。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本于2024年8月27日发布。 https://doi.org/10.1101/2024.08.27.609949 doi:biorxiv preprint
beehave是一个典型的高分辨率生态模型:它的空间范围相对较小。它仅表示一个蜂巢周围的景观,即5 x 5km²。因此,它不能用于评估蜜蜂及其在各个地区,国家或其他地区的栖息地的状况。Beehave的现有工作流程依赖于周围景观中田野和农作物的地图,这些田地和农作物很少可用,并且数据以测试菌落表现的模型预测的数据。Beehave已在25多个研究中使用(Suppl。材料1),但它用于支持国家或欧洲一级的政策制定。这些政策包括欧洲社区共同农业政策(CAP)的重要方面。支持制定此类政策,同时还可以帮助农民和养蜂人及其协会发展可持续和生物多样性的实践,有必要将Beehave的范围和预测能力扩展到数字双胞胎(DT),并考虑到为生物多样性保存而发展的特定挑战(DT)2023)。数字双胞胎使我们能够以一致的方式申请Beehave,从当地特定地点应用到国家范围。
Div> 1马来西亚马来西亚医学科学学院免疫学系,马来西亚巴鲁市,2个细胞疗法中心(CTC),约旦大学,安曼,安曼,约旦,约旦,医学实验室科学系3,应用医学科学系约旦,马来西亚巴鲁市医学科学医学科学学院医学科学学院4号医学微生物学和寄生虫学系Thick nibong, Malaysia, 7 Advanced Membrane Technology Research Center (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia, 8 LCPM, CNRS, Université de Lorraine, Nancy, France, 9 Tardigradenano LLC, Irvine, CA, United状态
图 1 中央复合体 (CX) 和相关神经纤维网的解剖结构。(a) CX、外侧复合体 (LX) 的内侧球 (MBU) 和外侧球 (LBU) 的 3D 重建正面图。(b) (a) 中显示的 3D 重建的侧视图。CX 由中央体 (CBU) 的上部、中央体 (CBL) 的下部、原脑桥 (PB) 和成对结节 (NO) 组成。(c) (a) 中显示的 3D 重建的示意横截面,其中显示了前唇 (ALI)。后沟 (pg) 延伸在中央体和 NO 之间。后视交叉 (PCH) 位于中央体和 PB 之间。腹沟纤维复合体 (vgfc) 位于 CBL 和 ALI 之间。(d – h) 通过 CX 的光学切片,用突触蛋白染色。 (d) CBL 被分为九个垂直切片(切片边界用虚线表示一个半球)。(e)每个结节由一个上部单位(NOU)和一个下部单位(NOL)组成。(f)胆囊(GA)是 LX 内的一个小的细长的神经纤维网,位于峡部 2(IT2;边界用黑色虚线表示)。(g)CX 前方光学切片中上部神经纤维网的外观(边界用虚线表示)。(h)前唇(ALI)位于中央体前方。a,前部;l,外侧;LCA,蘑菇体侧萼;MB,蘑菇体;MCA,蘑菇体内萼;m,内侧;p,后部;SIP,上中间原大脑;SLP,上外侧原大脑;SMP,上内侧原大脑。比例尺 = 50 μ m (a – d,f,h), 20 μ m (e), 100 μ m (g) [彩色图可在 wileyonlinelibrary.com 上查看]
提交内容:CRISPR/Cas 9 介导的糖受体 AmGr3 突变作为研究蜜蜂 (Apis mellifera) 生理和行为的新工具 10
Bao,L.,Zheng,N.,Zhao,H.,Hao,Y.,Zheng,H. (2011)。 使用神经电刺激对拴系蜜蜂的飞行控制。 国际IEEE/EMBS神经工程会议,墨西哥坎昆。 http://doi.org/10.1109/ner.2011.5910609 Bermudez,F。G.和Fearing,R。(2009)。 拍打机器人上的光流。 IEEE/RSJ国际智能机器人和系统会议。 http://doi.org/10.1109/iros.2009.5354337 Bozkurt,A.,Paul,A.,Pulla,S.,Ramkumar,A. (2007)。 在早期变形过程中插入的微型探针微型系统平台,以启动昆虫飞行肌肉。 IEEE第20届国际微电动机械系统会议(MEMS),日本诺戈。 https://doi.org/10.1109/memsys.2007.4432976 Bozkurt,A.,Gilmour,R。,R。,&Lal,A。 (2009a)。 射射线助理的射击辅助飞行。 IEETRANSACTIONSONBIO-MEDICALENGINER,56,2304–2307。 https://doi.org/10.1109/tbme.2009.2022551 Bozkurt,A.,Gilmour,R.,Sinha,A.,Stern,D。,&Lal,A. (2009b)。 基于昆虫素界面的神经结核病学。 IEEE交易,关于生物医学工程的交易,56,1727–1733。 https://doi.org/10.1109/tbme.2009.2015460 Bozkurt,A.,Gilmour,R.,Stern,D。,D。,&Lal,A. (2008a)。 基于MEMS的生物电子神经肌肉界面,用于昆虫半机械人的飞行控制。 美国亚利桑那州图森市第21届IEEE国际微型机械系统会议。 从昆虫到机器。Bao,L.,Zheng,N.,Zhao,H.,Hao,Y.,Zheng,H.(2011)。使用神经电刺激对拴系蜜蜂的飞行控制。国际IEEE/EMBS神经工程会议,墨西哥坎昆。http://doi.org/10.1109/ner.2011.5910609 Bermudez,F。G.和Fearing,R。(2009)。拍打机器人上的光流。IEEE/RSJ国际智能机器人和系统会议。http://doi.org/10.1109/iros.2009.5354337 Bozkurt,A.,Paul,A.,Pulla,S.,Ramkumar,A.(2007)。在早期变形过程中插入的微型探针微型系统平台,以启动昆虫飞行肌肉。IEEE第20届国际微电动机械系统会议(MEMS),日本诺戈。https://doi.org/10.1109/memsys.2007.4432976 Bozkurt,A.,Gilmour,R。,R。,&Lal,A。(2009a)。射射线助理的射击辅助飞行。IEETRANSACTIONSONBIO-MEDICALENGINER,56,2304–2307。 https://doi.org/10.1109/tbme.2009.2022551 Bozkurt,A.,Gilmour,R.,Sinha,A.,Stern,D。,&Lal,A. (2009b)。 基于昆虫素界面的神经结核病学。 IEEE交易,关于生物医学工程的交易,56,1727–1733。 https://doi.org/10.1109/tbme.2009.2015460 Bozkurt,A.,Gilmour,R.,Stern,D。,D。,&Lal,A. (2008a)。 基于MEMS的生物电子神经肌肉界面,用于昆虫半机械人的飞行控制。 美国亚利桑那州图森市第21届IEEE国际微型机械系统会议。 从昆虫到机器。IEETRANSACTIONSONBIO-MEDICALENGINER,56,2304–2307。https://doi.org/10.1109/tbme.2009.2022551 Bozkurt,A.,Gilmour,R.,Sinha,A.,Stern,D。,&Lal,A.(2009b)。基于昆虫素界面的神经结核病学。IEEE交易,关于生物医学工程的交易,56,1727–1733。https://doi.org/10.1109/tbme.2009.2015460 Bozkurt,A.,Gilmour,R.,Stern,D。,D。,&Lal,A.(2008a)。基于MEMS的生物电子神经肌肉界面,用于昆虫半机械人的飞行控制。美国亚利桑那州图森市第21届IEEE国际微型机械系统会议。从昆虫到机器。http://doi.org/10.1109/memsys.2008。 4443617 Bozkurt,A.,Lal,A。,&Gilmour,R。(2008b)。 对昆虫肌肉的电加热进行飞行控制。 加拿大温哥华的机器和生物学协会IEEE工程学的第30届年度国际会议。 https://doi.org/10.1109/iembs.2008.4650529 Breugel,F。V.,Regan,W。,&Lipson,H。(2008)。 IEEE机器人和自动化,15,68-74。 https://doi.org/10.1109/mra.2008。 929923 CAO,F.,Zhang,C.,Choo,H。Y.,&Sato,H。(2016)。 具有用户调整速度,步长和步行长度的昆虫计算机混合腿机器人。 皇家学会界面杂志,20160060 13,http://doi.org/10。 1098/rsif.2016.0060 Chung,A。J.,&Erickson,D。(2009)。 使用未成熟的植入微流体的工程昆虫飞行代谢。 芯片上的实验室,9,669–676。 https://doi.org/10.1039/b814911a Daly,D.C.,Mercier,P.P.,Bhardwaj,M.,Stone,A.L.,A.L.,Aldworth,Z。N. 脉冲UWB接收器SOC进行昆虫运动控制。 IEEE固态电路杂志,45,153–166。 https://doi.org/10.1109/jssc.2009.2034433 Fraser Rowell,C。H.(1963)。 一种长期植入刺激电极进入蝗虫大脑的方法,以及刺激的一些结果。http://doi.org/10.1109/memsys.2008。4443617 Bozkurt,A.,Lal,A。,&Gilmour,R。(2008b)。对昆虫肌肉的电加热进行飞行控制。加拿大温哥华的机器和生物学协会IEEE工程学的第30届年度国际会议。 https://doi.org/10.1109/iembs.2008.4650529 Breugel,F。V.,Regan,W。,&Lipson,H。(2008)。 IEEE机器人和自动化,15,68-74。 https://doi.org/10.1109/mra.2008。 929923 CAO,F.,Zhang,C.,Choo,H。Y.,&Sato,H。(2016)。 具有用户调整速度,步长和步行长度的昆虫计算机混合腿机器人。 皇家学会界面杂志,20160060 13,http://doi.org/10。 1098/rsif.2016.0060 Chung,A。J.,&Erickson,D。(2009)。 使用未成熟的植入微流体的工程昆虫飞行代谢。 芯片上的实验室,9,669–676。 https://doi.org/10.1039/b814911a Daly,D.C.,Mercier,P.P.,Bhardwaj,M.,Stone,A.L.,A.L.,Aldworth,Z。N. 脉冲UWB接收器SOC进行昆虫运动控制。 IEEE固态电路杂志,45,153–166。 https://doi.org/10.1109/jssc.2009.2034433 Fraser Rowell,C。H.(1963)。 一种长期植入刺激电极进入蝗虫大脑的方法,以及刺激的一些结果。加拿大温哥华的机器和生物学协会IEEE工程学的第30届年度国际会议。https://doi.org/10.1109/iembs.2008.4650529 Breugel,F。V.,Regan,W。,&Lipson,H。(2008)。 IEEE机器人和自动化,15,68-74。 https://doi.org/10.1109/mra.2008。 929923 CAO,F.,Zhang,C.,Choo,H。Y.,&Sato,H。(2016)。 具有用户调整速度,步长和步行长度的昆虫计算机混合腿机器人。 皇家学会界面杂志,20160060 13,http://doi.org/10。 1098/rsif.2016.0060 Chung,A。J.,&Erickson,D。(2009)。 使用未成熟的植入微流体的工程昆虫飞行代谢。 芯片上的实验室,9,669–676。 https://doi.org/10.1039/b814911a Daly,D.C.,Mercier,P.P.,Bhardwaj,M.,Stone,A.L.,A.L.,Aldworth,Z。N. 脉冲UWB接收器SOC进行昆虫运动控制。 IEEE固态电路杂志,45,153–166。 https://doi.org/10.1109/jssc.2009.2034433 Fraser Rowell,C。H.(1963)。 一种长期植入刺激电极进入蝗虫大脑的方法,以及刺激的一些结果。https://doi.org/10.1109/iembs.2008.4650529 Breugel,F。V.,Regan,W。,&Lipson,H。(2008)。IEEE机器人和自动化,15,68-74。https://doi.org/10.1109/mra.2008。929923 CAO,F.,Zhang,C.,Choo,H。Y.,&Sato,H。(2016)。具有用户调整速度,步长和步行长度的昆虫计算机混合腿机器人。皇家学会界面杂志,20160060 13,http://doi.org/10。1098/rsif.2016.0060 Chung,A。J.,&Erickson,D。(2009)。使用未成熟的植入微流体的工程昆虫飞行代谢。芯片上的实验室,9,669–676。https://doi.org/10.1039/b814911a Daly,D.C.,Mercier,P.P.,Bhardwaj,M.,Stone,A.L.,A.L.,Aldworth,Z。N.脉冲UWB接收器SOC进行昆虫运动控制。IEEE固态电路杂志,45,153–166。https://doi.org/10.1109/jssc.2009.2034433 Fraser Rowell,C。H.(1963)。一种长期植入刺激电极进入蝗虫大脑的方法,以及刺激的一些结果。