1 洪堡大学物理研究所,Newtonstrasse 15, 12489 Berlin, Germany 2 萨拉托夫国立大学生物系,Astrakhanskaya 82, 410012 Saratov, Russia 3 洛夫莱斯生物医学研究所,Albuquerque, NM 87108, USA 4 新墨西哥大学医学院神经病学系,Albuquerque, NM 87131, USA 5 光电子学和生物医学光子学组,Aston 大学光子技术研究所,Birmingham B4 7ET, UK 6 俄罗斯科学院植物和微生物生物化学和生理学研究所,Prospekt Entuziastov 13, 410049 Saratov, Russia 7 俄罗斯科学院 Shemyakin-Ovchinnikov 生物有机化学研究所,Miklukho-Maklaya 16/10, 117997 莫斯科,俄罗斯 8 波茨坦气候影响研究所,复杂性科学系,Telegrafenberg A31,14473 波茨坦,德国 * 通讯地址:glushkovskaya@mail.ru;电话:+7-8452-519220
* 通讯作者: Nicole A. Crowley,博士 Scott H. Medina,博士 助理教授 副教授 生物学系 生物医学工程系 和生物医学工程系 宾夕法尼亚州立大学 宾夕法尼亚州立大学 511 CBE 大楼 326 Mueller 实验室 宾夕法尼亚州立大学公园 16802 宾夕法尼亚州立大学公园 16802 电话:(814) 863 – 4758 电话:(814) 863 – 0278 电子邮件:shm126@psu.edu 电子邮件:nzc27@psu.edu 缩写标题:靶向 BBB 药物递送 NPPR 热门话题 总字数:600 总图片:1 总参考文献:6
摘要 - 聚焦超声(FUS)可用于打开血脑屏障(BBB),而具有对比剂的MRI可以检测到该开口。然而,重复使用基于Gadolinium的对比剂(GBCA)对患者提出了安全问题。这项研究是第一个提出通过深度学习来模拟体积传输常数(KTRAN)以减少造影剂剂量的想法的想法。该研究的目的不仅是重建人工智能(AI)衍生的ktrans图像,而且还可以通过低剂量对比剂T1加权MRI扫描来增强强度。我们通过先前的最新时间网络算法成功验证了这个想法,该算法的重点是在体素级别提取时域特征。然后,我们使用了由时空卷积神经网络(CNN)基于三维CNN编码器组成的时空网络(ST-NET),以提高模型性能。我们在FUS诱导的BBB开口数据集中测试了ST-NET模型,该模型是从小鼠大脑的不同侧面测试的。ST-NET成功检测并增强了BBB开放信号,而无需牺牲空间域信息。st-net被证明是减少对对比剂的需求,用于对对比剂进行对比剂的需求,以模拟从时间序列动态对比增强磁共振成像(DCE-MRI)扫描中对BBB开放的K-Trans图进行建模。
摘要:农产品副产品和微藻是具有神经保护特性的低成本、高价值的生物活性化合物来源。然而,治疗分子的神经保护效果可能受到其穿过血脑屏障 (BBB) 到达大脑的能力的限制。在本研究中,对已证明具有体外神经保护潜力的刺槐 (ASFE)、Cyphomandra betacea (T33)、小粒咖啡 (PPC1)、油橄榄 (OL-SS)、柑橘 (PLE100) 副产品和微藻 Dunaliella salina (DS) 的各种绿色提取物进行了基于永生化人脑微血管内皮细胞 (HBMEC) 模型的体外 BBB 通透性和运输测定。进行了毒性和 BBB 完整性测试,并在孵育 2 和 4 小时后使用气相色谱和液相色谱结合四极杆飞行时间质谱 (GC/LC-Q-TOF-MS) 评估了目标生物活性分子穿过 BBB 的运输情况。HBMEC-BBB 运输试验显示,代表性神经保护化合物(如单萜和倍半萜、植物甾醇和一些酚类化合物)具有高渗透性。从拟议的体外 BBB 细胞模型中获得的结果进一步证明了目标天然提取物的神经保护潜力,这些提取物是功能性成分的有希望的来源,可以转化为具有科学支持的神经保护声明的食品补充剂、食品添加剂或营养保健品。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2022 年 10 月 28 日发布。;https://doi.org/10.1101/2022.10.27.513950 doi:bioRxiv preprint
摘要:血脑屏障 (BBB) 由脑内皮细胞 (BEC) 构成,生物制剂无法通过。脂质体和其他纳米颗粒是将生物制剂递送至 BEC 的良好候选物,因为它们可以万能地包裹大量目标分子。脂质体需要附着靶向分子,因为不幸的是,BEC 几乎无法从循环中吸收非靶向脂质体。独立研究小组的实验已证实,靶向转铁蛋白受体的抗体在将纳米颗粒靶向递送至 BEC 方面更胜一筹。通过与抗转铁蛋白受体抗体结合对纳米颗粒进行功能化,可导致纳米颗粒被脑毛细血管和毛细血管后小静脉的内皮细胞吸收。降低与脂质体结合的靶向转铁蛋白受体抗体的密度会限制 BEC 的吸收。阻止与高亲和力抗转铁蛋白受体抗体结合的纳米粒子的运输、降低靶向抗体的亲和力或使用单价抗体可增加 BEC 的吸收,并允许进一步穿过 BBB。靶向脂质体在毛细血管后小静脉中从血液到大脑的运输的新证明很有趣,显然值得进一步研究机制。最近有证据表明靶向纳米粒子穿过 BBB,这为未来将生物制剂输送到大脑带来了巨大的希望。
摘要:为了研究新化学和生物实体的生物分布,血脑屏障 (BBB) 的体外模型可能成为药物发现早期阶段的重要工具。在这里,我们展示了我们设计的内部三维 BBB 生物芯片的概念验证。这种三维动态 BBB 模型由内皮细胞和星形胶质细胞组成,它们在模拟血流的流动条件下共培养在聚合物涂层膜的相对两侧。我们的结果证明了 BBB 非常有效,证据是 (i) 跨内皮电阻 (TEER) 增加了 30 倍,(ii) 紧密连接蛋白的表达显著增加,以及 (iii) 与静态体外 BBB 模型相比,我们的技术解决方案具有较低的 FITC-葡聚糖渗透性。重要的是,我们的三维 BBB 模型有效地表达了 P-糖蛋白 (Pg-p),这是脑源性内皮细胞的标志性特征。总之,我们在此提供了一种完整的整体方法和对整个 BBB 系统的见解,可能在临床和制药领域带来转化意义。
放射治疗 (RT) 是治疗脑肿瘤的基石。除了细胞毒性之外,RT 还会破坏血脑屏障 (BBB),导致周围脑实质的通透性增加。尽管这种影响已被普遍承认,但不同放射方案如何影响以及在多大程度上影响 BBB 完整性仍不清楚。本系统综述和荟萃分析的目的是研究光子 RT 方案在临床和临床前研究中对 BBB 通透性(包括其可逆性)的影响。我们系统地回顾了 PubMed、Embase 和 Cochrane 搜索引擎中的相关临床和临床前文献。通过荟萃分析对总共 69 项纳入研究(20 项临床研究、49 项临床前研究)进行了定性和定量分析,并评估了不同疾病类型和 RT 方案中 RT 诱导的 BBB 通透性的关键决定因素。定性数据综合显示,35% 的纳入临床研究报告了 RT 后 BBB 中断,而 30% 的研究尚无定论。有趣的是,基于分次方案和累积剂量计算出不同生物有效剂量的研究之间没有观察到明显差异;然而,在治疗后的患者随访期间注意到 BBB 中断增加。临床前研究的定性分析显示,78% 的纳入研究存在 RT BBB 中断,这通过荟萃分析得到显著证实(p < 0.01)。值得注意的是,研究之间存在高偏倚风险、出版偏倚和高度异质性。这项系统评价和荟萃分析揭示了 RT 方案对 BBB 完整性的影响,并开启了将此因素整合到未来 RT 决策过程的讨论,以更好地研究其发生及其对伴随或辅助治疗的影响。
摘要 - 与循环微泡注射结合的经颅聚焦超声(FUS)是唯一的非侵入性技术,它在时间和局部局部打开了血脑屏障(BBB),使靶向的药物允许进入中枢神经系统(CNS)。但是,单元FUS技术不允许同时靶向具有高分辨率的几个大脑结构,并且需要多元素设备来补偿头骨引入的畸变。在这项工作中,我们介绍了声学全息图在小鼠的两个镜像区域进行双侧BBB开口的第一个临床前应用。该系统由一个以1.68 MHz工作的单元素集中的换能器组成,并与3D打印的声性全息图耦合,旨在在体内在麻醉的小鼠中产生两个对称焦点,同时构成了由骷髅头造成的波段差异。T1赢得的MR图像显示在两个对称的准球面斑点处的gadolinium散发。通过编码时间转换领域,全息图能够在小型临床动物头骨内部多个斑点的衍射极限附近以分辨率的分辨率聚焦的声能。这项工作证明了全息图辅助BBB开放对单独半球对称区域中中枢神经系统中的低成本和高度局部靶向药物递送的可行性。
越来越需要快速,健壮且可靠的方法,以选择对人类健康和福祉的各种重要矩阵的有机化合物的选择性确定。搜索最近的科学文献揭示了每年与电化学传感器相关的不同主题发表的许多论文的趋势[1]。由于电化学技术已经建立了良好且易于使用,因此科学兴趣集中在新兴应用上,例如非侵入性护理(POC)设备(POC)设备和可支配的可穿戴传感器。