这项研究的目的是将先前描述的立体定向脑活检(SBB)技术,三维头骨轮廓指南(3D-SCG)和Brainsight进行神经量化,与Brainsight的新颖SBB技术相结合,与A 3D Print the Headframe(BS3D-HF)相结合,以改善工作集。这是一种前瞻性方法,与五个不同品种和大小的犬尸体进行了比较。在具有基准标记的尸体上进行了初始螺旋CT。每种方法随机选择了十个不同的目标点。设计和打印了BS3D-HF的头部。轨迹。Steinmann Pins(SP)放入目标点,然后重复CT(CT后)。精度。对于3D-SCG,中值偏差为2.48 mm(0.64–4.04)。有神经元行动,中值偏差为3.28毫米(1.04–4.64)。对于BS3D-HF,中值偏差为14.8毫米(8.87–22.1)。 3D-SCG和中位偏差的神经元行径之间没有显着差异(p = 0.42)。 将BS3D-HF与3D-SCG进行比较时,中位偏差存在显着差异(P <0.0001)。 此外,当将BS3D-HF与神经元动态进行比较时,中位偏差存在显着差异(P <0.0001)。 我们的发现得出的结论是,对于SBB,3D-SCG和神经元驱动都是准确的,但是BS3D-HF不是。对于BS3D-HF,中值偏差为14.8毫米(8.87–22.1)。3D-SCG和中位偏差的神经元行径之间没有显着差异(p = 0.42)。将BS3D-HF与3D-SCG进行比较时,中位偏差存在显着差异(P <0.0001)。此外,当将BS3D-HF与神经元动态进行比较时,中位偏差存在显着差异(P <0.0001)。我们的发现得出的结论是,对于SBB,3D-SCG和神经元驱动都是准确的,但是BS3D-HF不是。尽管可行,但是当前的BS3D-HF技术需要进一步的细化,然后才建议将其用于狗的SBB。
在显微镜的头部显示(HUD)上可见的现实世界手术领域的解剖结构(HUD)。6,7这与虚拟现实(VR)辅助神经元行径不同,这要求外科医生在精神上构建与2D成像数据的外科手术模型的3D模型,并可能导致工作流动破坏。8鉴于AVM的异质性血管结构及其与周围结构的密切相关性,基于AR的神经导航可能特别有助于建立和维持对术前和内室内AVM拓扑的理解。9尽管过去几年中已经在多种神经外科病理中描述了AR技术的使用,但文献特征 - 与AVM切除结合使用,其用途仍然很少。在此情况报告中,我们提供了我们的标准AVM切除程序
dutta,Narayan Banerjee,Rajesh Kumble Nayak,Sudip Kumar Garain:星形行径相互作用,磁性水力动力学和辐射转移,以了解紧凑型物体周围的恒星活动和动态。太阳能物理学。弯曲时空及其天体物理意义中的量子场理论。引力波(Ligo)。早期和后期宇宙学,其观察意义以及与粒子物理的联系。10。Ayan Banerjee:a)使用波导和拉曼光学镊子的生物素化学,b)使用光镊的非平衡统计力学,c)c)在空气中使用光学诱捕(A),a),b)或c)。11。dhananjay Nandi:使用最新的光谱技术与气相分子碰撞中的实验分子动力学12。Arindam Kundagrami:理论聚合物物理和软凝结物理物理学13。rangeet bhattacharyya:开放量子系统的非平衡动力学14。Anandamohan Ghosh:随机矩阵理论