背景:脑震荡是最常见的神经系统疾病,每年影响全球数百万人。确定影响脑震荡发病率、严重程度和恢复的表观遗传机制可以为这种损伤提供诊断和预后见解。目标:本系统评价旨在确定脑震荡的表观遗传机制。方法:在七个电子数据库中搜索研究脑震荡的表观遗传机制及其潜在神经病理学的研究:PubMed、MEDLINE、CINAHL、Cochrane 图书馆、SPORTDiscus、Scopus 和 Web of Science。结果:根据纳入和排除标准,两位作者独立分析了 772 个标题,最终列出了 28 项研究,共计 3042 名参与者。我们观察到 sncRNA、甲基化、组蛋白修饰和脑震荡之间的独立关联。总体而言,204 个小非编码 RNA 在脑震荡参与者和对照组之间或在没有脑震荡后症状的脑震荡参与者和有脑震荡后症状的脑震荡参与者之间显着失调。其中,37 个在多个研究中报告,其中 23 个与至少一项进一步研究的方向一致。Ingenuity 通路分析确定了 10 个已知可调控 15 个与人类神经病理相关的基因的 miRNA。两项研究发现脑震荡参与者的整体甲基化发生了显著变化,一项研究发现 DNA 损伤和脑震荡背景下 H3K27Me3 减少。结论:综述结果表明,表观遗传机制可能在病理生理机制中发挥重要作用,可能影响脑震荡对个人的结果、恢复和潜在的长期后果。
在个性化医学的不断发展的景观中,将阿育吠陀原理与现代基因组科学融为一体为医疗保健带来了变革性的机会。本文探讨了普拉克里蒂(Prakriti)的概念,即阿育吠陀(Ayurveda)定义的个体的独特构成及其与遗传特征的潜在相关性。通过将阿育吠陀见解与基因组和表观基因组研究合并,我们提出了一个个性化医疗保健框架,以考虑遗传倾向和生活方式因素。该研究概述了实际方法,包括使用单核苷酸多态性(SNP)分析来识别与特定prakriti类型相关的遗传变异,以及表观遗传学在理解生活方式选择如何影响基因表达中的作用。此外,我们讨论了全基因组关联研究(GWAS)的实施,以识别可以增强针对个人需求量身定制的疾病预防和治疗策略的生物标志物。通过促进阿育吠陀从业者与基因组研究人员之间的合作,我们旨在促进对健康的整体理解,使古老的智慧与当代科学联系起来。最终,这种整合不仅丰富了个性化的医疗保健,而且为尊重遗传多样性和传统知识的创新治疗解决方案铺平了道路。
表观遗传途径在不同的生物学过程和表型 - 环境相互作用中至关重要,以响应不同的压力源,并且可以诱导表型可塑性。它们涵盖了有丝分裂的几个过程,在某些情况下是减数遗传的,因此可以通过种系转移到后代。转世表观遗传遗传(TEI)描述了可以通过环境因素(例如,父母护理,病原体,污染物,气候变化)引起的表型性状,例如生育,代谢功能或行为的变化,可以通过Epigenetic Mecha Mecha Nismisss nismismisss nismismiss nismismiss。对TEI的研究有助于解释表观遗传机制在适应,广告性和进化中的作用。然而,世代之间表观遗传变化的传播以及导致持续表型变化的下游事件链的分子机制尚不清楚。因此,(通过直接暴露在父母和后代之间传播信息之间的信息)和跨代(通过几代人传播,几代人消失了触发因素)的后果是现代生物学领域的主要问题。在本文中,我们审查并描述了TEI领域仍遇到的主要差距和问题:表观遗传学研究所面临的一般挑战;在遗传过程中破解关键的表观遗传机制;确定TEI的相关驱动因素,并实施一种研究TEI的协作和多学科方法。最后,我们提供了有关如何克服这些挑战的建议,并最终能够确定表观遗传学在跨代遗传中的特定贡献,并使用正确的工具用于环境科学研究和生物标志物的识别。
1 洛林大学,CNRS,LEMTA,F-54000 南锡,法国 2 圣戈班巴黎研究中心,39 quai Lucien Lefranc,F-93303 奥贝维利埃,法国 3 巴黎高等矿业学院,92 Rue Sergent Blandan,54042 南锡,法国 摘要 本文介绍了一种简单的热表征方法,记为 CFM,用于测量高温(即高达 600°C)下绝缘材料的表观热导率。CFM 方法是一种稳态相对测量方法,需要校准。实验装置的校准是使用已知热导率的硅酸钙板进行的。在 100 至 600°C 之间对低密度可压缩纤维毡和高密度硅酸钙板进行了热导率测量。低密度纤维毡的保护热板 (GHP) 法和高密度硅酸钙板的平行热线 (PHW) 法所得值与实验值高度一致。通过测量不同表观密度的低密度纤维毡的表观热导率,结合简单的传导-辐射模型,可以估算出平均特定消光系数,该值与透射/反射测量得出的值高度一致。
10摘要11个大型基础模型最近为生命科学开辟了新的人工通用情报12的途径,在分析单细胞转录组数据的分析中表现出了巨大的希望。13 Nevertheless, such challenges as the tremendous number of signaling regions, extreme data sparsity, 14 and the nearly binary nature of single-cell epigenomic data have prevented the construction of a 15 foundation model for epigenomics thus far, though it is evident that abundant epigenomic properties 16 such as chromatin accessibility provide more decisive insights into cell states than transcriptomics, 17 shaping the chromatin regulatory以不同的细胞类型控制转录的景观。在这里,我们介绍了Epiagent,这是第一个单细胞染色质可访问性数据的基础模型,在手动策划的大规模的人 - 示威 - corpus上预定了19个,该模型由20个大约500万个细胞和350亿个标记组成。epiagent编码染色质可访问性21个细胞模式作为简洁的“细胞句子”,并采用双向注意机制来捕获22个捕获调节网络背后的细胞异质性。具有全面的基准测试,我们23证明,Epiagent在典型的下游任务中出色,包括无监督功能24提取,有监督的细胞类型注释和数据插补。通过掺入外部25个嵌入,Epiagent促进了对样本外26的细胞反应的预测,并刺激了看不见的遗传扰动,以及参考数据整合和查询数据27映射。通过模拟关键顺式调节元件的敲除,Epiagent可以实现silico 28治疗癌症分析。我们进一步扩展了Epiagent的零射击功能,允许在新测序数据集上进行29个直接细胞类型注释,而无需进行其他培训。30 31引言32基因表达如何受到候选顺式调节33个元素(CCR)之间的复杂相互作用的控制,长期以来一直是基因组学领域的基本问题。的确,34这些元素不仅取决于其DNA序列,还取决于驱动与基因调节1,2相关的细胞异质性的表观遗传修饰35。在这些见解上,使用测序(SCATAC-SEQ)的单细胞36分析可用于转座酶可访问的染色质(SCATAC-SEQ)为揭示单个细胞的这些调节性景观3提供了前所未有的37个机会3,实现了38个细胞异质性4,组织发育4,组织的疾病机构5和疾病机制6。随着测序39技术的进步,已经构建了众多涵盖胎儿发育7,成人组织8、40脑组织9和神经发育10的大型细胞图谱,并提供了前所未有的资源41,可在多元化的生理条件下揭露调节模式。但是,大量的42个CCR,极端的稀疏性及其几乎二元性质对Scatac- 43
表观遗传学是我们理解人类进化的一个重要方面,它研究基因功能中可遗传的修饰,但不包括 DNA 序列的修饰。这个有趣的研究领域强调可逆和环境敏感机制(如组蛋白、DNA 甲基化和非编码 RNA 活性)如何控制基因表达并支持表型变异。这些技术使动物能够适应不断变化的环境而不会经历永久性的遗传变化,为进化过程提供了灵活的基础。理解人类进化现在很大程度上依赖于表观遗传学。由于动物可以适应不断变化的环境而不会经历永久性的遗传变化,因此进化过程具有灵活的基础。在整个人类进化过程中,表观遗传修饰与免疫系统功能和大脑发育等特征密切相关。表观遗传模式受到饮食、疾病和气候等环境因素的影响,这使得生物能够在各种生态位中繁衍生息。本研究重点关注它们在人类进化中的作用,探索表观遗传控制背后的分子机制以及表观遗传学如何使人类表现出惊人的表型可塑性。本文还探讨了表观遗传学研究对人类学的影响,重点关注现代人类与原始人类祖先的区别以及表观遗传学如何影响文化和社会实践。本综述进一步强调了表观遗传学通过融合遗传学、人类学和环境研究的知识,在解释人类进化的复杂性方面具有革命性的潜力。
多囊卵巢综合征(PCOS)是育龄妇女中最常见的内分泌疾病。尽管其发病率很高并且被认为是无排卵性不孕的主要原因,但人们对该综合征的了解仍然很少,仍存在诊断不足和治疗不足的情况,导致女性患者治疗方案的研究进展缓慢。这种复杂疾病的异质性是遗传、环境、内分泌和行为因素共同作用的结果。它通常与卵巢增大和功能障碍、雄激素水平升高和胰岛素抵抗有关。目前,尚无单一病因可以完全解释 PCOS 的发病机制。大多数证据表明 PCOS 是一种复杂的多因素疾病,具有高度的遗传性。表观遗传学是指基因组和基因表达的可遗传变化,而 DNA 序列没有任何改变。表观遗传学包括DNA甲基化、组蛋白修饰(乙酰化、磷酸化、甲基化等)和非编码RNA(ncRNA)含量的改变。现有研究认为表观遗传学,特别是DNA甲基化在PCOS的发病机制中起着至关重要的作用。
免责声明 本文件由 Oryzon Genomics, SA 编制,仅供演示期间使用。如果将本文件用于上述目的以外的目的,Oryzon Genomics, SA 不承担任何责任。本文件中的信息和任何意见或声明均未经独立第三方验证;因此,对于本文表达的信息或意见或声明的公正性、准确性、完整性或正确性,不作任何明示或暗示的保证。Oryzon Genomics, SA 不对因使用本文件或其内容而造成的任何损害或损失承担任何责任,无论是由于疏忽还是其他原因。本文件或其任何部分均不构成合同,也不得用于纳入或构建任何合同或协议。本文件中有关 Oryzon Genomics, SA 发行的证券过去买入或卖出的价格或 Oryzon Genomics, SA 发行的证券收益率的信息不能作为未来业绩的指导。
虽然表观遗传时钟作为生物衰老的标志引起了相当大的关注,但它们可能仅反映由更深层、更持久的力量——累积的 DNA 损伤——引发的下游变化。这篇文章揭示了遗传和表观遗传变化之间的相互作用,并为纯粹基于突变的时钟打开了大门。现在还为时过早,但一旦这项技术成熟,它就可以提供更可靠的年龄测量方法,因为永久性的