푎 麻省理工学院理论物理中心、量子优势联合设计中心和 NSF AI 人工智能与基本相互作用研究所,77 Massachusetts Avenue, Cambridge, MA 02139, USA 푏 Perimeter 理论物理研究所,31 Caroline Street North, Waterloo, ON N2L 2Y5, Canada 푐 巴斯大学数学科学系,4 West, Claverton Down, Bath, BA2 7AY, UK 푑 塞浦路斯研究所基于计算的科学与技术研究中心,20 KavafiStreet, 2121 Nicosia, Cyprus 푒 德国电子同步加速器 DESY,Platanenallee 6, 15738 Zeuthen 푓 柏林洪堡大学物理研究所,Newtonstraße 15, 12489 柏林,德国 푔 ICFO,巴塞罗那科学技术研究所,Av. Carl Friedrich Gauss 3,08860 Castelldefels(巴塞罗那),西班牙 电子邮件:lfuncke@mit.edu,tobias.hartung@desy.de,s.kuehn@cyi.ac.cy,karl.jansen@desy.de,manuel.schneider@desy.de,paolo.stornati@desy.de
课程内容/教学大纲简介:范围;历史、趋势和未来方向。通过搜索解决问题:生产系统和人工智能;图搜索策略:无信息搜索、启发式搜索技术;约束满足问题;随机搜索方法;搜索博弈树:极小极大、Alpha-Beta 剪枝。知识表示和推理:人工智能中的谓词演算:语法和语义、表达力、统一性、解析度;解析度反驳系统;情境演算。不确定性下的推理:不确定性概念;不确定知识和推理、概率;贝叶斯网络。规划:使用状态空间搜索进行规划;规划图;偏序规划。决策:顺序决策问题、最优策略算法。机器学习:从观察中学习:不同形式学习的概述、学习决策树、计算学习理论、统计学习方法、神经网络和联结主义学习。
摘要:随着触觉力的传感在机器触觉领域变得越来越重要,实现多维力传感仍然是一个挑战。我们提出了一个3D柔性传感器,该传感器由轴对称半球突出和四个同等大小的四分流电极组成。通过使用力和电场模型模拟设备,已经发现,当剪切力的幅度保持恒定并且其方向在0 -360°内变化时,可以通过四个电极的电压关系来表达力的大小和方向。实验结果表明,在0 - 90°的范围内可以达到15°的分辨率。此外,我们将传感器安装在机器人手上,使其能够感知触摸和掌握动作的幅度和方向。基于此,设计的3D柔性触觉传感器为多维力检测和应用提供了宝贵的见解。关键字:灵活的触觉传感,单电极模式,力检测,正常和剪切力,机器人手系统
我们还证明了更严格的 bTC 0 ( k ) 电路大小下限,这些下限是确定性解决关系问题所必需的,我们利用这些下限显著减少这种形式量子优势的潜在展示所需的估计资源需求。bTC 0 ( k ) 电路可以计算某些类的多项式阈值函数 (PTF),而这些类反过来可以作为神经网络的自然模型,并表现出增强的表达力和计算能力。此外,对于足够大的 k 值,bTC 0 ( k ) 包含 TC 0 作为子类。主要挑战在于建立经典相关性下限,以及设计获胜概率存在量子经典差距的非局部游戏,以便超越量子位到更高维度。我们通过为多输出 bTC 0 ( k ) 电路开发新的、更严格的多切换引理来应对前一个挑战。我们通过分析一类新的非局部博弈来解决后者,这些博弈以 mod p 计算的方式定义,其特点是经典成功概率与量子成功概率之间存在指数差异。这些技术工具可能具有更普遍和独立的兴趣。
变分量子算法(VQA)因其错误恢复能力强和对量子资源需求高度灵活而具有优势,广泛应用于嘈杂的中尺度量子时代。由于 VQA 的性能高度依赖于参数化量子电路的结构,因此值得提出量子架构搜索(QAS)算法来自动搜索高性能电路。然而,现有的 QAS 方法非常耗时,需要电路训练来评估电路性能。本研究首创了免训练 QAS,利用两个免训练代理对量子电路进行排序,代替传统 QAS 中昂贵的电路训练。考虑到基于路径和基于表达力的代理的精度和计算开销,我们设计了一个两阶段渐进式免训练 QAS(TF-QAS)。首先,使用有向无环图 (DAG) 表示电路,并设计基于 DAG 中路径数量的零成本代理来过滤掉大量没有前途的电路。随后,使用基于表达能力的代理来精细地反映电路性能,从剩余的候选电路中识别出高性能电路。这些代理无需电路训练即可评估电路性能,与当前基于训练的 QAS 方法相比,计算成本显著降低。在三个 VQE 任务上的模拟表明,与最先进的 QAS 相比,TF-QAS 实现了采样效率的大幅提高,提高了 5 到 57 倍,同时速度也提高了 6 到 17 倍。
引言:量子机器学习 (QML) [ 1 ] 使用参数化量子电路 [ 2 ] 作为统计模型,近年来引起了广泛关注,并被应用于自然科学 [ 3 – 8 ] 或生成建模 [ 9 – 13 ]。即使 QML 模型受益于高表达力 [ 14 ] 并在某些特定情况下表现出优于经典模型 [ 15, 16 ],但在深度神经网络时代,量子计算机 [ 17 ] 能获得什么样的优势仍不清楚。另一方面,量子数据可能是应用 QML 的自然范例,量子优势已得到证实 [ 18 ]。人们希望可以通过量子传感器 [ 19 ] 收集量子数据,并最终将其直接连接到量子计算机。在本文中,我们通过在量子设备上直接构建量子数据来模拟处理量子数据的可能性。我们使用变分基态求解器来获得真实基态的近似值,以模拟嘈杂的真实世界数据。具体来说,本文讨论如何使用监督学习方法计算哈密顿量 H 的基态相图。即使已经在二元情况下探索了类似的问题 [ 20 , 21 ],具有多个类别 [ 22 ] 并在超导平台上计算 [ 23 ],但所有这些方法都受到构造限制,即瓶颈。事实上,由于训练需要标签,并且它们是通过分析或数值计算的,这些技术只能加快计算速度,而不能超出其验证范围。另外,异常检测(AD)是一种无监督学习技术,已被提出[24,25]作为绕过这一瓶颈的方法,通过查找数据集内的结构。然而,AD只能获得定性的、可能不稳定的结果,并且
生成模型一直是机器学习研究中特别受关注的一个领域,成功的模型架构极大地改进了生成模型,包括变分自编码器 (VAE)、生成对抗网络 (GAN) 和可逆神经网络 (INN) [1-3]。除其他应用外,生成模型在事件生成中的应用也得到了广泛研究 [4-6]。与马尔可夫链蒙特卡洛 (MCMC) 技术 [7-11] 相比,生成模型的优势不仅限于提高推理速度,而后者迄今为止已成为领先的 LHC 模拟和解释方法。此外,生成模型可以进行端到端训练,从而实现更全面的应用,如展开 [12-14]、异常检测 [15-19] 等等 [20]。然而,这些神经网络 (NN) 的参数空间巨大,使其能够模拟复杂的交互,但这也导致对计算资源的需求巨大。流行的 NN 架构的规模早已达到计算可行性的边界。量子机器学习 (QML) 将量子计算的强大功能引入现有的机器学习基础,以建立并利用量子优势,从而实现量子算法独有的性能提升。虽然基于门的量子计算与经典计算有很大不同,但已经构建了许多与上述经典生成网络等效的模型,包括量子自动编码器 [ 21 ] 和量子 GAN [ 22 – 27 ]。值得注意的例外是 INN [ 28 , 29 ],它们尚未转移到 QML 领域。此类网络将成为量子神经网络 (QNN) 阵列的理想补充。虽然经典 INN 中雅可比行列式的可处理性使它们能够执行密度估计,这从本质上防止了模式崩溃,但通常无法有效地计算完整的雅可比矩阵 [ 30 ]。 INN 中完全可处理的雅可比矩阵(QNN 可用)将允许高效学习主要数据流形 [31-34],为可解释的表示学习和对底层过程的新洞察开辟机会。基于耦合的 INN 架构已通过经验证明对消失梯度问题更具弹性 [28],这使它们可以直接受益于具有许多参数的深度架构。然而,到目前为止列出的许多 INN 应用已经需要大量的训练资源。目前的研究表明,量子模型可以避免这种对巨大参数空间的需求。它们在表达力方面胜过常规 NN,能够用少得多的参数表示相同的变换 [35-39]。这一理论基础得到了几个专门构建的 QML 电路实例的支持,这些电路为专门设计的问题提供了比经典解决方案更有效的解决方案 [ 40 – 43 ]。QNN 已经成功应用于相对有限的高能物理问题 [ 21 , 25 , 44 – 46 , 46 – 51 ] 以及非 QML 方法 [ 52 – 56 ]。然而,据我们所知,尚未尝试构建可逆 QNN,该 QNN 可通过其可逆性用作生成任务的密度估计器。通过这项工作,我们旨在填补与经典 INN 量子等价的剩余空白,开发量子可逆神经网络 (QINN)。我们展示了如何将 QNN 流程中的每个步骤设计为可逆的,并展示了模拟网络估计分布密度的能力。作为原理证明,我们将我们的模型应用于最重要、研究最多的高能物理过程之一的复杂模拟 LHC 数据,pp → Z j → ℓ + ℓ − j,