样品等离子清洁器 用于清洁和蚀刻气锁中的样品。减少样品表面污染可提高图像质量和分辨率 生成活性气相自由基,去除不需要的污染物。需要气锁。包括 • 等离子清洁器 Evactron Zephyr • MultiSEM 气锁的多端口 • 多端口适配器套件 • 集成在 ZEN 软件中的控制
条形码印刷在纸质或合成材料上,背景为白色。如果因任何原因(如老化、磨损或表面污染)导致背景变暗,则会影响条形码的扫描能力。如果条形码仅供短时间使用,如印刷在运输箱上的条形码,则这通常不是问题。如果需要无限期地使用条形码,则需要特别考虑印刷在什么基材上(纸质还是合成材料)以及是否需要一些二次保护,如透明层压板。条形码需要永久保存,需要远距离扫描,通常印刷在反光材料上,以最大限度地提高对比度和扫描距离,同时使条形码相对坚不可摧。
在当今的高性能电动发动机中,发夹技术用于提高效率。而不是由绕线线制成的定子,将较厚的铜销组装和焊接。由于表面污染,夹紧,定位或以前的切割过程,典型的焊缝失败,例如飞溅物,毛孔或连接不足。对于生产设施,它不足以识别有缺陷的焊缝;还需要进行分类以确定故障的原因并尽快纠正它们。在本研究的帮助下,在原位X射线摄影中评估了多光谱监测系统的能力。数据显示与蒸气毛细管的稳定性,焊接位置和飞溅形成的相关性。
1) 艾哈迈德·A·卡卡什 (Karkash)A .(2024) 金属块体、表面和纳米结构的分子动力学研究 2) Diaz, Leopoldo III (2022) 过渡金属表面的第一性原理研究 3) Alsalmi, Omar (2019) 高温二元 Ti-Al 相图的第一性原理研究 硕士委员会主席 1) Aslan, Ali N. (2023) 氧-碳表面污染下 Ag 和 Au 的计算二次电子发射分析 2) Alsharari, Sami (2023) 具有不同碳覆盖率的 Cu (110) 表面的理论研究 3) Vincent III, Timothy Mark (2021) Si 中的 Cu 和 Ag:难以捉摸的 Cu0 和 *Cu0 缺陷 4) Brown, Madeline (2021) 清洁和氢层镍表面的二次电子发射5)Mulherin,Olivia(2017)AuCd形状记忆合金的弹性和热性能的理论研究
摘要对液体与二维(2D)材料之间相互作用的全面了解对于从液体细胞显微镜到Hydredrovoltaics的操作,转移和组装的2D材料的操纵,转移和组装至关重要。本综述通过调查悬浮2D材料的固有润湿性以及底物支持的2D材料的明显润湿性来讨论这种相互作用,最近通过水接触角(WCA)实验揭示了这两种材料。我们讨论可能影响明显WCA的重要因素,包括薄膜弹性,表面污染以及底物下方的微观结构和电子状态。我们还讨论了一些微观级别的见解,这些见解最近通过光谱特征和表面能量测量提供了最近提供的。通过讨论表征2D材料与液滴之间相互作用的最新实验进步,该评论旨在激发未来的理论进步,能够揭开在2D材料系统中观察到的复杂且偶尔矛盾的润湿行为。
NASA-STD-3001第2卷,Rev D [V2 3006]以人为中心的任务分析[V2 6059]微生物空气污染[V2 6063]污染清洁[V2 7016]个人卫生能力[V2 7017]身体清洁私密[V2 7020]身体浪费7021 V2 7021 V2 701]人体废物管理隐私[V2 7023]身体废物管理条款[V2 7024]身体废物住宿[V2 7025]人体废物遏制[V2 7026]人体废物气味[V2 7027]人体废物垃圾接收器接收到可及性[V2 7029]机组人员[V2 7064]垃圾住宿[V2 7065]垃圾量分配[V2 7066]垃圾存放干扰[V2 7069]危险废物标记有害废物[V2 7081]微生物表面污染[V2 7082]表面材料清洁[V2 7083]清洁材料
表面区域附近的电子状态可能与散装状态不同,这对于理解在表面和半导体,能量和催化剂中的各种物理现象中至关重要。在这里,我们通过将具有纤维控制的贵重气体沉积贵重气体,报告了角度分辨光发射光谱的异常表面区域带增强效应。与常规的表面污染相反,在贵族气体吸附的情况下,表面区域SB带的强度可以增强三倍以上。同时,对增强的表面区域带观察到了孔掺杂效应,其他频带几乎不变。掺杂效果更明显,较重的贵重气体。我们提出,贵族天然气原子有选择地将碱金属空缺位点填充在地面上,从而改善了表面状况,增强了表面区域带,并有效地将其与Pauli排斥机制相兴奋。我们的结果提供了一种独特而可逆的方法,可以通过受控的表面贵族加气沉积来改善表面条件和调整表面区域。
清洁和消毒评估是任何制药行业中CGMP的重要组成部分。为了验证消毒程序中使用的消毒剂的疗效,以减少表面污染,我们测试了商业消毒剂的作用。在筛选测试中进行了程序的资格,以衡量测试消毒剂的有效性。干净的表面变得更容易消毒,因此清洁和消毒程序相互补充。消毒疗效和验证研究是根据美国药物<1072>消毒剂和防腐剂方案进行的。使用的测试生物包括USP <1072>中提到的标准菌株。在消毒之前和之后遵循标准使用稀释测试方案,并评估了微生物载荷以计算log 10还原指数。随后,我们开发并验证了使用大约10 6 - 10 7的消毒程序,每个测试总菌落形成单位。我们的结果表明,美国Pharmacopeia <1072>的接受标准<1072>>杀菌,杀真菌和孢子效应。正确实施我们的清洁和消毒程序,尊重规定的浓度和接触时间,导致所有使用的微生物减少了4 log 10。在筛选测试中进行了程序的资格,以衡量消毒剂的有效性,根据其作用原则选择。
自从 Young 首次报告他的观察结果 [1] 以来,至少 200 年来,测量液滴在水平表面上形成的接触角(即所谓的固着滴)一直受到科学家和其他人的关注。通过这个参数可以计算出很多有价值的信息,特别是表面能值。这些信息反过来又可以提供有关表面污染或表面润湿性的信息 [2]。因此,接触角测量在很多科学和技术领域都具有重要意义,包括医学、表面科学、表面工程,以及生产塑料和纺织品油墨和涂料的行业,正如 Adamson [3]、Hansen [4]、Zisman 和同事 [5] 所描述的。最早的测量方法,如 Young 的测量方法,使用量角器或类似的刻度尺来测量角度。后来还开发了其他各种技术,比如下面讨论的所谓的半角法。这些方法的基础是假设固着液滴是球形的,或构成球体的一部分,其中使用欧几里得几何原理计算接触角值。最广泛使用的两种方法是: – 画一条与液滴半径正交的线,该线与液滴与水平表面的接触点——三相点相交,构造切线; – 所谓的半角法,使用从三相点到圆的顶点画一条线(图1)。这当然只对完美的圆形有效。多年来,取得了一些进展,特别是美国专利5,268,733,其中液滴的图像被投影到量角器屏幕上[6]。屏幕不是以度数校准,而是以半比例校准。量角器可以移动到
自从 Young 首次报告其观察结果 [1] 以来,测量放置在水平表面上的液滴(即所谓的固着液滴)所形成的接触角至少 200 年来一直受到科学家和其他人士的关注。通过此参数,可以计算出许多有价值的信息,尤其是表面能值。这些信息反过来可以提供有关表面污染或表面润湿性的信息 [2]。因此,接触角的测量在广泛的科学和技术领域都具有重要意义,包括医学、表面科学、表面工程以及生产塑料和纺织品油墨和涂料的行业,正如 Adamson [3]、Hansen [4]、Zisman 及其同事 [5] 所描述的那样。最早的测量方法(例如 Young 的测量方法)使用量角器或类似的刻度尺来测量角度。人们还开发了其他各种技术,例如下面讨论的所谓的半角法。这些方法的基础是假设液滴是球形的,或构成球体的一部分,其中接触角值是使用欧几里得几何原理计算的。其中最广泛使用的两种方法是: – 通过绘制一条与液滴半径正交的线来构造切线,该线与水平表面的接触点(三相点)相交; – 所谓的半角法使用从三相点到圆的顶点绘制的一条线(图1)。这当然只适用于完美的圆形。多年来,我们取得了一些进展,特别是美国专利 5,268,733,其中将液滴的图像投射到量角器屏幕上 [6]。屏幕不是以度为单位进行校准,而是以半刻度进行校准。量角器可以移动到