两性离子表面因其具有抵抗蛋白质、细菌和细胞粘附的倾向而越来越多地被用作防污涂层,并且通常以聚合物系统的形式应用。据报道,强相互作用的小分子两亲分子的自组装可产生用于防污应用的纳米带。合成的两亲分子自发形成具有纳米级横截面的微米长纳米带,并且本质上在其表面上显示出致密的两性离子部分涂层。涂有纳米带的基质表现出浓度依赖性厚度和近乎超亲水性。然后探测这些表面涂层的防污性能,结果表明,与未涂层对照相比,蛋白质吸附、细菌生物膜形成和细胞粘附均显着降低。利用粘性小分子自组装纳米材料进行表面涂层为有效的防污表面提供了一种简便的途径。
两性离子表面因其具有抵抗蛋白质、细菌和细胞粘附的倾向而越来越多地被用作防污涂层,并且通常以聚合物系统的形式应用。据报道,强相互作用的小分子两亲分子的自组装可产生用于防污应用的纳米带。合成的两亲分子自发形成具有纳米级横截面的微米长纳米带,并且本质上在其表面上显示出致密的两性离子部分涂层。涂有纳米带的基质表现出浓度依赖性厚度和近乎超亲水性。然后探测这些表面涂层的防污性能,结果表明,与未涂层对照相比,蛋白质吸附、细菌生物膜形成和细胞粘附均显着降低。利用粘性小分子自组装纳米材料进行表面涂层为有效的防污表面提供了一种简便的途径。
本协议于 2013 年 5 月 1 日由国际油漆工和相关工会、美国劳工联合会 - 产业工会联合会、纽约州第 9 区理事会(以下简称“工会”)与东部承包商协会或雇主签订并生效,有效期至 2021 年 4 月 30 日:姓名:____________________________地址:__________________________州:____邮政编码:______(以下简称“雇主”)。兹证明如下:鉴于,本协议各方希望建立熟练工和学徒油漆工、墙面覆盖工、干式墙面修整工、木工、喷砂工、表面涂层工和铅减排工人为雇主成员工作的条款和条件(各方同意,“熟练工”一词是指经验丰富的油漆工、墙面覆盖工、干式墙面修整工、木工、喷砂工、表面涂层工、铅减排工人或已完成本协议规定的一项经批准的学徒计划的人员)。因此,各方现同意如下:
1 新型连接技术 6 焊接接头和焊接结构的质量 2 焊接工艺的建模与仿真 7 表面涂层的工程应用 3 先进材料连接中的具体问题 8 无损检测(NDT) 4 先进材料和接头的表征 9 纳米科学、纳米技术和复合材料 5 断裂力学、先进材料的损伤和剩余寿命
低地球轨道被动热涂层观测站 (PATCOOL) 立方体卫星是由 NASA 资助的在轨实验,由佛罗里达大学先进自主多航天器实验室开发和领导。立方体卫星任务旨在研究使用一种名为“Solar White”的低温选择性表面涂层的可行性,以此实现深空部件的更高效的被动冷却。在地面实验中,这项新技术已经证明它比任何现有的热涂层或涂料都能提供更高的太阳辐射反射率,而 PATCOOL 立方体卫星将验证这项技术。PATCOOL 的热设计是任务成功的最重要方面。PATCOOL 有效载荷包含一个可容纳四个样品的外壳,其中两个样品涂有“Solar White”,另外两个样品涂有最先进的白色热控制涂层:AZ-93。本文讨论了使用行业标准热建模软件 Thermal Desktop® 构建热模型的过程以及 PATCOOL CubeSat 的热分析结果。热分析旨在研究 PATCOOL 有效载荷的稳态温度响应并确定热流源。内部和外部热模型的 PATCOOL 热分析结果表明,低温选择性表面涂层的性能远高于目前最先进的热涂料,从而验证了 PATCOOL 热控制设计的有效性。
Kent Nano石墨烯涂层可保护框架,叉子,车轮和头盔免受外部影响,并促进清洁。 它是基于图的表面涂层,可用于所有硬表面,尤其是在油漆,塑料覆层,玻璃或边缘上。 由于其二维碳原子结构,纳米石墨烯涂料可保护表面免受外部影响,并提供最高的高水平,具有深度效果。 肯特纳米石墨烯涂层比常规涂料具有更高的疏水症和刮擦强度Kent Nano石墨烯涂层可保护框架,叉子,车轮和头盔免受外部影响,并促进清洁。它是基于图的表面涂层,可用于所有硬表面,尤其是在油漆,塑料覆层,玻璃或边缘上。由于其二维碳原子结构,纳米石墨烯涂料可保护表面免受外部影响,并提供最高的高水平,具有深度效果。肯特纳米石墨烯涂层比常规涂料具有更高的疏水症和刮擦强度
金属天花板面板表面涂层,置于悬挂式钢格栅上,按照欧洲标准和 TAIM 标准生产。天花板系统 Line 80S Type 2 具有高气密性,易于清洁和消毒。设计符合 GMP 和 DIN EN ISO 14644 标准。表面平整、齐平,适合齐平安装,不含任何排气或颗粒发射材料。天花板接缝可选用适合洁净室的密封剂密封。
Eren Rose Gino女士(4年级M.Tech。int。医学纳米技术)确保Mitacs GRI奖学金参观卡尔加里大学。她将与卡尔加里大学生物医学工程系舒利希工程学院助理教授Maryam Badv教授合作3个月,从2024年5月25日开始。该项目的标题是“用于生物医学应用的多功能和超氧化生物材料和表面涂层”。她的访问时间为12周。