与其他方法(传导和对流)相比,红外辐射(IRD)的热干燥具有许多优势,例如减少加热时间,均匀的温度分布,降低的产品质量损失,区域加热的灵活性,简单的设备,紧凑,紧凑并节省能量[1]。ird用于不同的食物加工过程,例如干燥,烘烤,烫,蒸,蒸和巴氏杀菌[2]。IRD辅助对其他加热方法(微波炉,传导和对流)将提高能源效率。此外,IRD非常成功地用于干蔬菜,例如土豆[3],红薯[4],洋葱[5],猕猴桃和苹果[6],蔬菜,肉,鱼,意大利面。ird也已用于分析食品中的水分含量[7]。影响了薯片干燥动力学的因素[8],马铃薯的干燥速度的增加取决于增加辐射源的表面温度。在带有IRD的干虾中,当辐射板和气温升高时,辐射距离的影响并不那么重要[9]。
热成像技术根据斯特藩-玻尔兹曼定律检测物体的表面温度和地下热活动。如果具有更精细的热灵敏度,即噪声等效温差 (NEDT),该技术的影响将更为深远。目前推进 NEDT 的努力都集中在使用更好的相机来改善辐射信号的记录,从而使该数字接近路线图的末尾,即 20 到 40 mK。在这项工作中,我们采用了一种独特的方法,使表面辐射对物体微小的温度变化敏感。在金属-绝缘体转变与结构中的光子共振的共同作用下,热成像敏化剂 (TIS) 的发射率在预编程温度下急剧上升。使用 TIS,NEDT 提高了 15 倍以上,可在接近室温的个位数毫开尔文分辨率,使环境热成像能够用于广泛的应用,例如原位电子分析和早期癌症筛查。
恶劣的环境条件要求航天器配备精确的热管理系统。11 已有多项研究致力于直接和逆传热技术,用于测量和监测航天器在极端条件下(例如进入大气层 12 和其他类似应用)的表面温度和关键参数。13 – 15 虽然在太空任务期间保证航天器的安全至关重要且具有挑战性,但为宇航员维持适宜居住的环境则更加复杂。在地球上,暖通空调系统被认为很重要,因为它们为建筑环境中的人员提供热舒适度。然而,对于外层空间应用,适当的环境控制不仅关乎舒适,还关乎生存。国际空间站是太空环境控制需求的绝佳典范,三至六名机组人员将在太空中长期工作。为国际空间站的机组人员提供适宜居住的舒适环境至关重要,必须解决这方面的各种挑战,包括温度控制、通风、氧气生产和水。
摘要:空气中的红外热扫描仪可用于检测裂缝和洞穴开口,但仅在某些条件下。首先,空隙内的温度必须与外部条件显着不同。其次,必须存在某种机制将这种热差异带到可以被扫描仪检测到的表面。此外,必须确定其他事件是否影响这种机制。在裂缝的情况下,传导和对流都在改变裂缝上的雪桥表面温度方面的作用。对于洞穴,对流是带来温度改变的机制。对流与呼吸周期有关,而呼吸周期又是由气压压力变化引起的。可以从内部温度,外部温度和大气压力的地面测量中选择飞行时间,从而提供最有利的情况。洞穴信号更多是一个问题,因为它经常被其他事件引起的相似信号所包围。为格陵兰岛的裂隙场和波多黎各的洞穴系统提供了结果。
对环境的日益关注增加了陆地表面过程研究的数量。已经开发了各种尺度和不同物理复杂程度的陆地表面过程计算机模拟模型。由于土壤、植被和大气之间的相互作用在空间和时间上都不同,因此很难通过计算机模拟模型预测异质自然景观中的区域蒸发。然而,陆地表面辐射特性的遥感测量提供了一种间接测量各种尺度的陆地表面状态条件的方法。由于只有极少数经典通量剖面关系的参数可以直接从遥感测量中估算出来,因此无法从陆地表面的辐射特性直接估计蒸发量。此外,解决通量剖面关系所需的表面温度测量精度仍然很差。包括地面测量是一种可能的解决方案,但缺乏大规模和异质陆地表面的此类数据(这些参数没有测量),这对遥感算法的实施构成了直接障碍。
冷却剂失灵事故 (LOCA) 是核电站设计中最常考虑的事故情景之一 [1]。它发生在一次回路中断后,导致压力急剧下降,从而引起全包壳过热。水蒸气和高温引起的氧化会破坏包壳,并可能导致包壳爆裂,释放裂变产物 [2]。为了模拟此类事故,将在 CEA Cadarache 中心的 Jules Horowitz 研究反应堆中实施轻水单棒 LOCA 实验调查设备 (LORELEI) 测试装置 [3]。它将允许研究全包壳在这种条件下的行为 [4]。包壳表面温度监测在该实验中至关重要;它允许将爆裂条件与温度联系起来。然而,这种测量必须是非侵入性的,以尽量减少扰动并避免爆裂条件的任何变化,这排除了使用热电偶。在这种情况下,基于高温计的温度测量技术提供了一种合适的解决方案 [5]。
混合元素粉末是金属增材制造中预合金粉末的一种新兴替代品,因为用它们可以生产的合金范围更广,而且由于不开发新原料而节省了成本。在本研究中,通过在 BE Ti-185 粉末上进行 SLM,同时通过红外成像跟踪表面温度并通过同步加速器 X 射线衍射跟踪相变,研究了 SLM 过程中的原位合金化和同时发生的微观结构演变。然后,我们进行了事后电子显微镜检查(背散射电子成像、能量色散 X 射线光谱和电子背散射衍射),以进一步了解微观结构的发展。我们表明,虽然放热混合有助于熔化过程,但激光熔化只会产生合金区域和未混合区域的混合。只有通过在热影响区进一步热循环才能实现完全合金化,从而获得一致的微观结构。 2021 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可协议 ( http://creativecommons.org/licenses/by/4.0/ ) 开放获取的文章。
超宽的带隙半导体β加氧化物(β -GA 2 O 3)使电子设备的低传导损失和高功率有望。但是,由于β -GA 2 O 3的天然较差的导热率,其功率设备具有严重的自加热效果。为了克服这个问题,我们强调了使用TCAD模拟和实验的设备结构对β -GA -GA 2 O 3 Schottky屏障二极管(SBD)的峰值温度的影响。在TCAD中模拟了SBD拓扑,包括β -GA 2 O 3的晶体取向,Schottky金属,阳极面积和厚度的工作功能,表明β -GA -GA 2 O 3的厚度在降低二极管峰值温度方面起着关键作用。因此,我们制造了具有三个不同厚度外延层和五个不同厚度底物的β -GA 2 O 3 SBD。使用红外热成像摄像头测量二极管的表面温度。实验结果与模拟结果一致。因此,我们的结果为高功率β -GA -GA 2 O 3二极管提供了新的热管理策略。
最近的北极海冰迅速丧失激励了对北极海冰厚度的研究。描述冰厚性演化的全球气候模型需要北极海冰的准确空间温度曲线。但是,在整个北极ICECAP中测量完整温度曲线是不可行的。相反,通过从海底和卫星设备中获取数据可用来测量冰厚度。在本文中,我们开发了一种反向替代的观察者算法,以通过可用的海冰厚度和海冰表面温度来估算北极海冰模型的温度曲线。观察者以严格的方式设计,以将无盐度海冰模型的温度剖面估计误差提高到零。此外,提出的观察者用于通过数值模拟估算具有盐度原始海冰模型的温度曲线。模拟结果表明,我们的观察者设计在三天内成功地估计了海冰温度剖面,这比直接的开环算法快十倍。©2019 Elsevier Ltd.保留所有权利。
抽象的船从硫和气溶胶排放中亮起低船云,从而产生了可见的“船只轨道”。在2020年,新的运输法规规定,允许的燃料硫含量减少了约80%。最近的观察结果表明,可见的船只轨道已减少。模型模拟表明,自2020年以来,运输法规已引起净辐射强迫 + 0.12 wm -2。对最近温度异常的分析表明,北半球表面温度异常在2022- 2023年与观察到的云辐射强迫相关,并且云辐射强迫与2020年运输排放变化的模拟辐射强迫在空间上相关。运输排放变化可能会加速全球变暖。为了更好地限制这些估计,需要更好地访问船舶位置数据并了解船舶气溶胶排放。了解减少排放的风险和益处以及在鲁棒归因方面的困难强调了归因于拟议的有意气候干预的巨大不确定性。