转向从复杂动物中汲取灵感的材料,例如章鱼,这些动物能够使用分散的神经系统来传感,决策和显着的适应能力。要到达那里,需要进行变革性的工作,而作者的元氟化等创新是朝着正确方向迈出的一步。机械元素中的大多数成就都是由固体力学的进步加剧的,并与计算和数字制造方面的关键进展相吻合(例如,3D打印9)。流体10和流体力学11尚未被认为是该领域研究的重要贡献。作者的元荧光提供了一个机会,可以将固体超材料的现在成熟的思想转移到流体世界中。许多研究人员肯定会从这项研究中汲取灵感,并会更好地理解并最终利用元氟的特征。这条道路具有挑战性,但是未来的提示将能够借鉴流体动力学研究的悠久而丰富的历史。至关重要的是要了解元氟的流动方式与普通液体的流动不相同。例如,当水流过小管时,其流量速率是由两个点之间的压力差异确定的,而不是由该压力的大小。对于Djellouli及其同事的元氟化物,幅度也很重要:带球胶囊的系统的压力差将引起与完全折叠的悬浮液相同的压力差异的行为不同。反过来,此状态将影响
CEA,并在实验室中开发了包括Fifrelin在内的几种核裂变守则。代码依赖于四个免费参数,这些参数是为了重现平均中子和伽玛多重性的四个免费参数。这些输出均以各自的不确定性计算。在这项工作中,Fifrelin被视为黑匣子,我们从中没有任何先验知识。目的是找到合适的自由参数列表,以获取特定的输出数据。由于蒙特 - 卡洛方法,对目标不确定性(约9分钟)的计算时间相对较高,为0.01或0.03-取决于组件。因此,随机探索输入空间(4个维度)是很耗时的。在本文中,我们建议使用机器学习来克服此类问题。由于输入和输出数量少,并且我们对输出的不确定性所使用的机器学习方法的事实是高斯过程回归,也称为Kriging [1]。我们提出的方法结合了这种Kriging方法和目标中的优化算法,以找到与给定输出相对应的自由输入参数。以下第2节介绍了算法Fifrelin,该作品的目标是在第3节中确定的。第4节是关于高斯流程回归背后的数学和关于我们开发的算法的第5部分。最后,我们在6中显示了结果,并得出了结论。
共同沉积的分子异质结构与成分的统计相互混合是有吸引力的候选者来调整光学和传输特性的候选者,以及促进诸如单线填充之类的光物理过程的能力。为了理解和控制这些系统中的单重手术机制,研究基本激发态动力学是最大的兴趣。在这项工作中,通过时间分辨和依赖温度依赖性的光致发光光谱和时间分辨率分辨出几个PicoSeconds的时间分辨率,研究了与有效的单口材料五苯五苯五苯五苯五苯。对光致发光动力学的分析表明,通过分离的五苯分子分子到五苯苯甲酸的凝集酸盐,最终发生单一填料。蒽噻吩中发光的有效且在很大程度上独立于温度独立的猝灭归因于能量水平的有利的级联级别对准,并且可以假设Försterresonance能量传递是苯乙烯聚集乙烯聚集聚集体的主要驱动机制。此处研究的系统可以用作设计其他分子异质结构的蓝图,并具有空间分离的光收集和单式填充区域。
摘要本文着重于工程离子聚合物 - 金属复合材料(EIPMC)传感器的建模和开发,用于应用机器人/机器人辅助手指康复治疗等应用中的应用和触觉测量。具体来说,要量身定制设备的灵敏度,使用聚合物表面磨损技术制造的EIPMC被用作感应元素。开发了增强的化学电力力学模型,该模型捕获了磨损过程对不同负载条件下多物理传感行为的影响。使用扫描电子显微镜成像和循环伏安法和计时仪法对制造的传感器进行表征。结果显示出电化学性能的显着改善,包括电荷存储,双层电容和表面电导。最后,创建了由不同的EIPMC变体组成的原型姿势姿势手指传感器,并在姿势和触觉实验下验证其性能。量身定制的EIPMC传感器显示,与对照IPMC相比,开路电压响应增加了,在姿势变化下,在触发变化下,在触觉变化下,在3.2倍的峰值响应下,在触觉载荷过程中较高敏感响应的峰值较大,表明EIPMC传感器的可行性更为敏感。
自 20 世纪 50 年代以来,核火箭主要由洛斯阿拉莫斯国家实验室研发,以提供更快的太空旅行方法。(Bussard 和 DeLauer,1958 年;Dewar,1974 年;Borowski,1987 年;Dewar,2007 年)。这些技术利用核设计,以传统方式将热量从密封核心传输到液氢膨胀器或热电子转换器。从 20 世纪 80 年代开始,一种更有效的核能转换设计出现在火箭中(Haslett,1995 年;Lieberman,1992 年),当火箭远离地球大气层时,核心就会暴露在外,直接使用核碎片推力。从 2011 财年到 2014 财年,NASA 先进概念研究所研究了裂变碎片火箭发动机 (FFRE)。 (Werka 等人,2012 年;Chapline,1988 年;Chapline 等人,1988 年;Chapline 和 Matsuda,1991 年)。FFRE 会以极高的比冲(I SP)将裂变碎片的动量直接转化为航天器动量。I SP 是衡量发动机使用燃料产生推力的效率的指标。对于火箭技术,I SP 定义为每单位重量(地球上)推进剂在时间内的积分推力。(Benson,2008 年;Sutton 和 Biblarz,2016 年)。I SP 由公式 1 给出
Chang等。 8读数为14.5±2。 为简单起见,我们将这些解决方案称为“ pH 14解决方案”。Chang等。8读数为14.5±2。为简单起见,我们将这些解决方案称为“ pH 14解决方案”。
在载人火星任务的背景下,描述了裂变碎片火箭发动机概念的电离辐射特性。这种推进系统利用悬浮在气凝胶基质中的微米级裂变燃料颗粒,可以在高功率密度(> kW/kg)下实现非常高的比冲量(> 10 6 s)。裂变芯位于电磁铁孔内,并位于外部中子减速剂材料内。低密度气凝胶可以对燃料颗粒进行辐射冷却,同时最大限度地减少与裂变碎片的碰撞损失,与以前的概念相比,可以更有效地利用裂变燃料产生推力。本文介绍了来自外部(例如银河宇宙射线)和内部(反应堆)源的宇航员机组人员的稳态电离辐射当量剂量的估计值。航天器设计包括一个离心概念,其中过境居住舱围绕航天器的重心旋转,为机组人员提供人工重力,并与核心分离。我们发现,裂变碎片推进系统与离心相结合可以缩短过境时间,降低等效辐射剂量,并降低长期暴露于微重力环境的风险。这种高比重脉冲推进系统将使其他载人快速过境、高 delta-V 行星际任务成为可能,其有效载荷质量分数远高于替代推进结构(化学和太阳能电力)。
本报告是由美国政府某个机构资助的工作报告。美国政府及其任何机构、巴特尔纪念研究所或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,或承担任何法律责任或义务,或保证其使用不会侵犯私有权利。本文中对任何特定商业产品、流程或服务的商品名、商标、制造商或其他方面的引用并不一定构成或暗示美国政府或其任何机构或巴特尔纪念研究所对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
1. 美国宇航局的探索系统架构研究,最终报告 NASA-TM-2005-214062 2. 月球和火星表面应用的裂变发电系统选项比较 NASA/TM-2006-214120 3. 月球裂变表面发电系统设计和实施概念 STAIF 2006 4. 空间应用的布雷顿和斯特林能量转换技术的历史回顾 NASA/TM-2007-214976 5. 经济型裂变表面发电系统研究最终报告 2007 6. 裂变表面发电系统中不同金属接头的高温稳定性 STAIF 2007 7. 支持裂变表面发电系统的热控制涂层和固体润滑剂的辐照后评估 STAIF 2007 8. 裂变表面发电转换器 SNC 的构造材料辐射敏感性2007 9. 经济型裂变表面发电系统概念 NASA/TM-2008-215166 10. 多千瓦自由活塞斯特林发电概述
•本演示的目的是解释一些环形基因中的基本成分。对您需要阅读的背景已经做出了某些假设。在大多数情况下,这是严格的描述性材料,您不需要科学背景就可以从中获得一些东西。但是,对物理学有所了解,并且至少在基础层面上对微分方程有所了解。了解基本的静电和磁静态学也将很有用。•随着您的进步并对发现的内容感兴趣,在文献和IAEA出版物中可以找到其他材料,以基于放射性核素生产的原理和实践。可以通过遵循箭头找到该书。