Evanthia Pangou, 1,2,3,4,9 Olga Bielska, 1,2,3,4,9,10 Lucile Guerber, 1,2,3,4 Stephane Schmucker, 1,2,3,4 Arantxa Agote-Ara´ n, 1,2,3,4 Taozhi Ye, 1,2,3, Yong Ligta, 13, 13-3 1,2,3,4 Erwan Grandgirard, 1,2,3,4 Charlotte Kleiss, 1,2,3,4 Yansheng Liu, 5 Emmanuel Compe, 1,2,3,4 Zhirong Zhang, 1,2,3,4 Ruedi Aebersold, 6,7 Romeo Ricci, 1,2,8,3,13, * Sumara * 1 Institut de ´ ne ´ tique et de Biologie Mole ́ culaire et Sellulaire (IGBMC), Illkirch, France 2 Center National de la Recherche Scientifique UMR 7104, Strasbourg, France 3 Institut National de la Sante ́ et de la Recherche Medicale U964, Strasbourg University, Strasbourg, France France 5 Cancer Biology Institute, Yale School of Medicine, West Haven, CT, USA 6 Institute of Molecular Systems Biology, Department of Biology, ETH Z € urich, Z € urich, Switzerland 7 Faculty of Science, University of Z € urich, Z € urich, Switzerland 8 Laboratoire de Biochimi de Biologie Hospital, New Molecular Hospital bourg, France 9 These authors contributed equally 10 Present address: Buck Institute for Research on Aging, Novato, CA, USA 11 Lead contact *Correspondence: ricci@igbmc.fr (RR), sumara@igbmc.fr (IS)
摘要 — 千瓦级项目由美国宇航局的空间技术任务理事会/游戏规则改变者发展计划于 2015 财年发起,旨在展示小型空间裂变动力在相关环境(技术就绪水平 5)下的子系统级技术就绪情况,以满足空间科学和载人探索的能源需求。千瓦级项目的核心是采用斯特林技术的千瓦级反应堆 (KRUSTY) 测试,该测试包括开发和测试 1 千瓦(电)级裂变动力系统 (FPS) 的地面技术演示器。KRUSTY 将开发和验证的技术可扩展至 1 至 10 千瓦(电)的空间 FPS,从而可以为载人探索提供模块化地面 FPS,以及未来潜在的更高功率的深空科学任务。KRUSTY 演示由美国宇航局和美国能源部国家核安全局共同资助。国家关键实验研究中心装置装配设施的KRUSTY演示于2018年第一季度完成。
免责声明这一信息是作为由美国政府机构赞助的工作的帐户准备的。美国政府或其任何机构,或其任何雇员均未对任何信息,设备,产品或过程披露或代表其使用将不会侵犯私人拥有的私有权利。参考文献以商品名称,商标,制造商或其他方式指向任何特定的商业产品,流程或服务,并不一定构成或暗示其认可,建议或受到美国政府或其任何机构的支持。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
图2。DRP1介导的线粒体裂变的稀疏敲低破坏了星形胶质细胞组织。a。对照(左)和SHDRP1(右)星形胶质细胞簇的代表性图像在p21视觉皮层中的核(底部)中放大。b。P180对照(左)和SHDRP1(右)星形胶质细胞簇中Sox9(绿色)和DAPI(青色)的代表性图像。c。 p21对照和SHDRP1星形胶质细胞中每个簇的星形胶质细胞核数量的量化,n = 5只动物,每个条件,未配对的t检验。条是平均值±SEM。d。 p21对照和SHDRP1星形胶质细胞中每个簇相邻星形胶质细胞核的数量,n = 5只动物,每个条件,未配对的t检验。条是平均值±SEM。e。 p180对照和SHDRP1星形胶质细胞中每个簇相邻星形胶质细胞核的数量定量,n = 3只动物,每个条件,未配对的t检验。条是平均值±SEM。
在其专家会议计划中,讨论了液态金属快中子增殖反应堆 (LMFBR) 中的裂变和腐蚀产物行为这一主题。当时很明显,随着美国、苏联、法国和英国实验性快中子增殖反应堆系统的出现,支持性研究计划的扩展以及这些不同活动产生的信息的碎片化性质,在国际层面上协调某些主题将是有益的。
可逆的线粒体损伤,而线粒体裂变会在不可逆地损坏的线粒体积累时发生。5个拉长线粒体是融合活性的结果,而裂缝和小球线粒体是通过裂变产生的。mItofusin 1和2(MFN1-2)和视萎萎缩1蛋白(OPA1)代表线粒体融合的主要编排,从而允许外部(OMM)和内部线形膜(IMM)之间融合。5,7与动力蛋白相关的蛋白1(DRP1),线粒体裂变1蛋白(FIS1),线粒体干蛋白1(MDV1)和线粒体裂变因子(MFF)而不是线粒体裂变。可以通过线粒体去除损坏和老化的线粒体,包括源自线粒体裂变的线粒体,并由生物发生取代新鲜形成的线粒体。7
裂变发电是一项很有前途的技术,它已被提议用于未来的几种太空用途。它正在考虑用于旨在探索太阳系甚至更远地方的大功率任务。当 NASA 的 1 kWe 千瓦斯特林技术反应堆 (KRUSTY) 原型于 2018 年完成全功率核试验时,空间裂变发电取得了巨大进展。它的成功激发了主要太空国家之间新一轮的研究竞争。本文回顾了 Kilopower 反应堆和 KRUSTY 系统设计的发展。它总结了目前正在考虑将裂变反应堆作为动力和/或推进源的任务。这些项目包括访问木星和土星系统、凯龙星和柯伊伯带天体;海王星探索任务;以及月球和火星表面基地任务。这些研究表明,对于功率水平达到~1 kWe的任务,裂变电推进(FEP)/裂变动力系统(FPS)在成本方面优于放射性同位素电推进(REP)/放射性同位素动力系统(RPS),而当功率水平达到~8 kWe时,它具有质量更轻的优势。对于飞行距离超过~土星的任务,含钚的REP可能在成本上无法接受,因此FEP是唯一的选择。地面任务更喜欢使用FPS,因为它满足10's kWe的功率水平,并且FPS大大拓宽了可能的着陆点的选择范围。按照目前的情况,我们期待在未来1-2年内实现旗舰级的裂变动力太空探索任务。
使核聚变能源不再采用联邦政府对裂变电厂所采取的相同监管方法。核聚变不同于裂变,对核聚变进行风险知情评估可以避免不必要的监管限制。具体而言,联邦法规中针对裂变系统的 10 CFR 第 50、52 条或针对先进裂变系统讨论的新监管方法(例如第 53 条)与核聚变系统无关,因为核聚变电厂的非正常运行事件与传统裂变设施相比具有截然不同的风险状况。此外,只有管理放射性物质和副产品材料的 10 CFR 第 20 和 30 条适用于商业和示范核聚变能源系统,因为该技术对环境的潜在影响极小
裂变过程于1939年首次报道,并于1942年实现了世界上第一个人造的自我维持裂变反应。创建自我维持的裂变链反应在概念上非常简单。所需的一切都是要放置在正确的几何形状中的正确材料 - 无需极高的温度或压力 - 系统将运行。自1942年以来,裂变系统已被政府,工业和大学广泛使用。裂变系统独立于太阳接近或方向运行,因此非常适合深空或行星表面任务。此外,裂变系统的燃料(高度富集的铀)本质上是非放射性活性的,含有0.064 curiedkg。这与当前的空间核系统(放射性同位素系统中的PU-238包含17,000个Curiedkg)相比,并且某些高度未来派的推进系统(D-T融合系统中的Tritium将包含10个,OOO.W CURIEDKG)。zyxw的另一个比较是,在启动时,典型的空间裂变推进系统将比火星探索者的寄居者漫游者(Sojourner Rover)使用放射性病来进行热控制。裂变系统的主要安全问题是避免无意系统开始 - 通过适当的系统设计解决此问题非常简单。裂变的能量密度比最好的化学燃料大7个数量级,如果正确使用,则足以使能够快速,负担得起的访问太阳系中的任何点。