计算和测量结果表明,DCB 试件的不稳定扩展从一开始就具有基本恒定的稳态裂纹速度,该速度取决于试件的几何形状和起始条件。计算还预测了高速下不连续扩展的情况。传递给试件的动能被恢复并成为裂纹驱动力。由此可见,断裂停止由整个扩展事件中的能量耗散历史控制,而不是由 Ka(在停止点计算的单个静态韧性值)控制。对于 4340 钢,在室温下裂纹速度增加到 860 ins-l 时,动态断裂能会增加 4 倍(增加 2 倍
芯片裂纹失效机制的质量和可靠性问题需要在供应链的每个步骤中得到解决,从晶圆供应商、半导体制造、封装组装、一级制造商组装到最终客户应用。找到芯片裂纹的关键因素对于根本原因调查至关重要,从而可以实施准确的纠正措施。可以采用的各种分析方法有很多,从标准 FA 技术(主要是 SAM 和断口分析)到先进技术,如热莫尔分析或有限元模拟。应用级分析、问题解决和持续改进方法也是解决此类问题的关键成功因素:故障树分析和石川图将实现完整的流程评估,包括封装和芯片完整性、装配流程、表面贴装技术 (SMT) 流程以及最终客户应用的应力条件。本文首先介绍了不同的互补 FA 技术,然后介绍了三个案例研究,这些案例研究说明了根据故障时间确定此类模具裂纹原因的难度。© 2015 Elsevier Ltd. 保留所有权利。
裂纹抑制器增强型铝制海洋结构的新设计和性能评估工具 1.0 目标。 1.1 本研究项目的目标是改进现有的建模能力,以有效可靠地捕捉裂纹抑制器对焊接铝制海洋结构疲劳和断裂性能的影响,并探索裂纹抑制器的最佳设计以满足设计要求。在恶劣的操作环境下设计大型铝制高速船需要焊接结构能够承受制造缺陷和服务引起的缺陷的亚临界增长而不会失效。研究表明,可以通过插入局部高断裂韧性材料或降低裂纹扩展驱动力来阻止裂纹扩展。由于缺乏用于铝结构的裂纹抑制器设计程序,因此无法选择最佳的机械抑制器装置来在裂纹达到临界状态之前阻止其扩散。本研究的目的是开发和实施一种新型计算工具,用于模拟存在裂纹抑制器、残余应力和焊接引起的材料异质性和非线性的情况下焊接铝制海洋结构的曲线裂纹扩展及其相关的残余强度和寿命。 2.0 背景。 2.1 当前和未来船舶制造商对重量和性能的需求要求最佳的轻质铝制船舶
混凝土是最常见的建筑材料。混凝土类型丰富,配方取决于特定用途。混凝土的微观结构通常是强烈的异质性,具有水泥,细和粗骨料,充满空气的毛孔和各种增援。混凝土的计算模型通常会大大降低以确保安全性。更精确的模型可以从材料和CO 2排放方面巨大节省。通过3D计算机断层扫描(CT)观察到的原位机械测试,特别是观察到3D的裂纹起始和生长可以帮助改善这些模型。 大规模的CT系统gulliver专用于研究分别为6 m和1 m的现实大型混凝土束和宽度的疲劳动力学。 分析在原位弯曲测试中生成的图像数据需要特别可靠的检测和正确分割薄裂纹。 因此,最近比较了裂纹分割的算法[1],扩展到多尺度裂纹[2,3],适用于纤维增强的混凝土[4,5],甚至是新发明的[6,7]。 对于方法的公平定量比较以及机器学习模型的培训和开发,基于合成裂纹结构的半合成CT图像[8-10]至关重要。 首先,裂纹是作为分数布朗动作的实现[11]。 后来,由于其多功能性,首选由随机伏罗尼叶镶嵌物的小平面形成的最小表面[8]。 在[13,14]中研究了裂纹与混凝土微观结构之间的相互作用。通过3D计算机断层扫描(CT)观察到的原位机械测试,特别是观察到3D的裂纹起始和生长可以帮助改善这些模型。大规模的CT系统gulliver专用于研究分别为6 m和1 m的现实大型混凝土束和宽度的疲劳动力学。分析在原位弯曲测试中生成的图像数据需要特别可靠的检测和正确分割薄裂纹。因此,最近比较了裂纹分割的算法[1],扩展到多尺度裂纹[2,3],适用于纤维增强的混凝土[4,5],甚至是新发明的[6,7]。对于方法的公平定量比较以及机器学习模型的培训和开发,基于合成裂纹结构的半合成CT图像[8-10]至关重要。首先,裂纹是作为分数布朗动作的实现[11]。后来,由于其多功能性,首选由随机伏罗尼叶镶嵌物的小平面形成的最小表面[8]。在[13,14]中研究了裂纹与混凝土微观结构之间的相互作用。这些合成的裂纹结构可以模仿多种裂纹形态,包括局部厚度分布和分支,并具有几个程度的表面粗糙度,因为[12]很好地证明了。到目前为止,合成裂纹并未与将CT图像用作背景的混凝土的微观结构相互作用。特别是,将裂缝分类为周围的混凝土组件。这是通过两步过程实现的。首先,通过模板匹配对裂纹结构进行了分割。然后,根据模板的方向上的灰色值对裂纹进行分类。在这里,我们提出了一种依赖于分割裂纹和聚集体的方法。然后将裂纹分配给两个可能的类别之一:经晶(通过聚集体)或晶间(聚集体之间)。然后,经晶裂纹体素的相对数量产生了一个度量,以量化裂纹行为的差异。在这里,我们研究了相同组成的难治性混凝土样品,但在不同温度下被后加工(烧结)。在压缩应力下扫描样品。他们清楚地表明,裂缝确实与混凝土的微观结构相互作用,请参见图1。裂纹可能沿聚集体,通过它们或通过周围的水泥矩阵传播。在失败之前,分析载荷步骤的经晶和晶间体素的分数进一步量化了烧结温度的影响。我们在两个圆柱形耐火混凝土样品的示例中演示了这一分析,分别在1.000°C和1.600°C下烧结。最近,我们为裂纹结构设计了一种多功能几何模型[8,9],用于方法验证和比较以及机器学习方法的训练 - 由随机Voronoi Tessellation的相位形成的最小表面。最小表面计算的优化方法的改进版本可实现多标准优化[17]。在这里,我们利用了这种新的可能性来生成合成裂纹结构,该结构避免了聚集体或通过图1中的真实混凝土样品中观察到的。
长度为一个晶粒直径数量级的解理微裂纹的形成被认为是断裂的初始步骤。假设解理所需的应力集中由厚的滑移带或孪生带提供,并计算这些屈服带的临界宽度。例如,在晶粒半径为 10-2cm 的铁中,临界滑移带宽度为 2 x 10-scm,该值与微裂纹附近的观察结果相一致。裂纹形成的第二阶段涉及微裂纹的半连续扩展,以形成不稳定的宏观裂纹。我们假定平面应变断裂发生在前进裂纹前方的屈服区域形成厚滑移带的条件下。需要做功来扩展初始微裂纹,并且该增量功用于计算线性断裂力学中所需的裂纹扩展力 GC。对于铁,微裂纹扩展力 'y 计算为 5 x 103 达因/厘米,GC 的最小值计算为 2.5 x 106 达因/厘米。这种方法强调了断裂所需的三个条件:1)应力和屈服带宽度的组合足以引起局部解理;2)系统中有足够的机械能来扩展裂纹;3)起始应力的临界值的发展,以便继续裂纹扩展。
芯片裂纹失效机制的质量和可靠性问题需要在供应链的每个步骤中得到解决,从晶圆供应商、半导体制造、封装组装、一级制造商组装到最终客户应用。找到芯片裂纹的关键因素对于根本原因调查至关重要,从而可以实施准确的纠正措施。可以采用的各种分析方法有很多,从标准 FA 技术(主要是 SAM 和断口分析)到先进技术,如热莫尔分析或有限元模拟。应用级分析、问题解决和持续改进方法也是解决此类问题的关键成功因素:故障树分析和石川图将实现完整的流程评估,包括封装和芯片完整性、装配流程、表面贴装技术 (SMT) 流程以及最终客户应用的应力条件。本文首先介绍了不同的、互补的 FA 技术,然后介绍了三个案例研究,这些案例研究说明了根据故障时间确定此类模具裂纹原因的难度。© 2015 Elsevier Ltd. 保留所有权利。
在使用陶瓷电容器和分板印刷电路板的每条电子装配线上,“挠曲裂纹”质量风险是众所周知的。不幸的是,“陶瓷电容器”中的挠曲裂纹总是延伸到电容器的金属端子下方,电气测试只能发现约 1% 的受影响部件。使用一种新方法 - 蚀刻端子并查看隐藏的裂纹 - 可以识别所有机械弯曲和翘曲的来源。在故障分析过程中,了解以下情况很有帮助:大多数时候,不仅故障的陶瓷电容器会显示裂纹模式,而且所有周围的陶瓷电容器也会显示裂纹模式。对不同裂纹模式和故障模式的充分了解还使我们能够发现 PCB 上不安全的弯曲和翘曲线。这为我们提供了如何将陶瓷电容器以最佳方向放置的指导方针,不仅要放置在分板线上,还要放置在安装和螺丝开口附近。最后,我们将回顾不同类型的陶瓷电容器,它们具有内部布局,即使出现弯曲裂纹,也能防止电路板故障。© 2015 Elsevier Ltd. 保留所有权利。
1.0 目标。1.1 本研究的目的是探索和实验验证复合材料补片在防止裂纹扩展和延长铝钢船舶结构寿命方面的应用。复合材料补片通过降低裂纹尖端区域的应力,起到裂纹抑制器的作用。负载通过粘合层从基板转移到复合材料补片上。此外,复合材料补片的附加约束可以防止这些裂纹合并成更大的裂纹。存在预测复合材料补片配置有效性的分析能力,但此类分析需要特定的理想化和假设,必须通过实验验证才能将这项技术用于实践。我们提出的项目旨在将这项技术开发为铝钢船舶板层断裂修复的有用且可靠的工具,并促进其在工业上的接受和实施。
金属合金的疲劳裂纹扩展速率 (FCGR) 曲线通常分为三个区域,区域 I 和 III 的斜率较陡,区域 II 的斜率适中,这通常称为巴黎制度。然而,文献中有许多例子表明区域 II 的斜率发生了变化。一些研究人员假设区域 I 和 III 呈线性行为,并导致对整个 FCGR 曲线的多线性描述。在本文中,我们假设疲劳裂纹扩展在所有裂纹长度和所有应力强度因子范围 (ΔK) 下都受幂律行为支配。为了适应多线性 FCGR 曲线的变化,在 FCGR 方程中引入了数学枢轴点,这使得可以直接拟合裂纹长度与循环数曲线以获得 FCGR。能够拟合区域 I 中扩展的裂纹的小裂纹和长裂纹扩展曲线,证实了区域 I 裂纹扩展速率受幂律行为支配。 FCGR 结果表明,小裂纹速度更快,但从区域 I 到区域 II 的过渡发生在特定的疲劳裂纹扩展速率下,无论是小裂纹还是长裂纹。这导致过渡时 ΔK 明显偏移,并指出不均匀采样是小裂纹阈值较低的原因。精确的小裂纹扩展速率测量与长裂纹扩展速率测量相结合,可根据初始不连续尺寸计算疲劳寿命,这与光滑样品的实验获得的疲劳寿命结果相对应。