深度神经网络作为小鼠视觉皮层模型的表现如何?迄今为止,大多数研究表明,结果远比灵长类动物视觉皮层建模的结果复杂得多。在这里,我们利用表征相似性分析和神经回归对小鼠视觉皮层中的数十个深度神经网络模型进行了大规模基准测试。利用艾伦大脑观测站的 2 光子钙成像数据集,记录了超过 6,000 个可靠的啮齿动物视觉皮层神经元对自然场景的反应,我们复制了以前的发现并解决了以前的差异,最终证明现代神经网络实际上可以比以前更合理地解释小鼠视觉皮层的活动。使用我们的基准作为图集,我们为有关分析水平的总体问题、有关最能预测整体视觉系统的模型属性的问题以及有关生物和人工表征之间映射的问题提供了初步答案。我们的研究结果为未来小鼠视觉皮层的深度神经网络建模提供了参考点,暗示了映射方法、架构和任务的新组合,以更全面地描述对神经科学如此重要的物种的视觉表征的计算主题,但其感知生理学和生态学与我们在灵长类动物中研究的有显著不同。
低地球轨道被动热涂层观测站 (PATCOOL) 立方体卫星是由 NASA 资助的在轨实验,由佛罗里达大学先进自主多航天器实验室开发和领导。立方体卫星任务旨在研究使用一种名为“Solar White”的低温选择性表面涂层的可行性,以此实现深空部件的更高效的被动冷却。在地面实验中,这项新技术已经证明它比任何现有的热涂层或涂料都能提供更高的太阳辐射反射率,而 PATCOOL 立方体卫星将验证这项技术。PATCOOL 的热设计是任务成功的最重要方面。PATCOOL 有效载荷包含一个可容纳四个样品的外壳,其中两个样品涂有“Solar White”,另外两个样品涂有最先进的白色热控制涂层:AZ-93。本文讨论了使用行业标准热建模软件 Thermal Desktop® 构建热模型的过程以及 PATCOOL CubeSat 的热分析结果。热分析旨在研究 PATCOOL 有效载荷的稳态温度响应并确定热流源。内部和外部热模型的 PATCOOL 热分析结果表明,低温选择性表面涂层的性能远高于目前最先进的热涂料,从而验证了 PATCOOL 热控制设计的有效性。
土星最大的卫星之一土卫二拥有广阔的地外海洋,这片海洋正日益成为未来探索假定生命的研究计划的热点。本文提出了一种针对土卫二外海洋的新型生物探索概念设计,根据最先进的传感器和机器人平台(陆地深海研究中使用的技术),重点研究各种尺寸的生物(从单细胞到多细胞和类似动物)的假定存在。特别地,我们专注于基于光声成像和被动声学以及分子方法的直接和间接生命探测能力的结合。这种以生物为导向的采样可以伴随同时进行的地球化学和海洋学测量,以提供与外海洋探索和理解相关的数据。最后,我们描述了这种多学科监测方法目前如何通过有线(固定)观测站及其相关的移动多参数平台(即自主水下和遥控航行器,以及爬行器、探测车和仿生机器人)在陆地海洋中实现,以及如何将其改进的设计用于外海洋探索。关键词:外海洋——土卫二——深海技术——自主水下航行器——爬行器——低温机器人。天体生物学 20,xxx–xxx。
研究文章 垃圾邮件发送者和诈骗者如何利用 Facebook 上的 AI 生成图像来增加受众 关于人工智能 (AI) 图像生成器(例如 DALL-E 和 Midjourney)的风险的大部分研究和讨论都集中在它们是否可用于将虚假信息注入政治话语。我们表明,垃圾邮件发送者和诈骗者(似乎是出于利润或影响力而不是意识形态的动机)已经在使用 AI 生成的图像在 Facebook 上获得显著的关注。有时,Facebook Feed 会向既不关注发布图像的页面也不意识到图像是 AI 生成的用户推荐未标记的 AI 生成的图像,这凸显了随着 AI 模型的激增,需要提高透明度和出处标准。作者:Renée DiResta (1)、Josh A. Goldstein (2) 所属机构:(1) 美国斯坦福大学斯坦福互联网观测站,(2) 美国乔治城大学安全与新兴技术中心 引用方式:DiResta, R., & Goldstein, J.A.(2024)。垃圾邮件发送者和诈骗者如何利用 Facebook 上的 AI 生成图像来增加受众。哈佛肯尼迪学院 (HKS) 错误信息评论,5 (4)。收到日期:2024 年 4 月 21 日。接受日期:2024 年 7 月 24 日。发布日期:2024 年 8 月 15 日。研究问题
欧洲空间碳观测站 (SCARBO) 计划旨在评估温室气体 (GHG) 人为排放的监测,目标是以可承受的成本在一天之内重新访问地球。主要项目范围之一是混合星座的可行性研究,其中包括高精度参考任务(哥白尼 CO2M 或 CNES MicroCarb 任务)和搭载创新微型有效载荷的 24 颗小型卫星。小型卫星星座的关键温室气体传感器是 NanoCarb 概念,这是一种前所未有的千克级傅里叶变换成像光谱仪。我们在此报告了示范机载活动的一些初步实验结果。已经开发出一种用于测量 CO 2 和 CH 4 的低成本 2 波段原型,然后将其集成到 SAFIRE 的 Falcon-20 上,并与 SRON 的 SPEX 气溶胶传感器相结合。 2020 年 10 月,我们从法国图卢兹的弗朗卡萨尔机场飞越西班牙、意大利,然后飞往波兰。即使我们没有机会飞越发电厂,我们也已经获取了大量数据并正在处理中。在介绍仪器、任务和数据产品后,我们评估了数据质量和模型的可靠性。我们最终根据背景得出 CO 2 和 CH 4 柱的预期灵敏度分别约为 1.5-2.5% 和 5%。我们最终证明了 NanoCarb 的第一个 TRL5 原型的可操作性。
国家气象局(NWS)天气预报办公室(WFO)的人员配备24/7/365,并向纽约居民提供天气,水和气候预测和警告。全国有122个WFO,其中四个在纽约。训练有素的预报员向公众,媒体,紧急情况管理和执法官员,航空和海洋社区,农业利益,商业和其他事件发出警告和事件的预测,包括严重的雷暴,龙卷风,飓风,冬季风暴,洪水和热浪。信息通过多种方式传播,包括无线紧急警报,社交媒体,Weather.gov和NOAA Weather Radio所有危害。每个WFO都有一个警告协调气象学家,他积极开展外展和教育计划,以加强与紧急管理,政府,媒体和学术社区的当地合作伙伴的工作关系。预报员在野火,洪水和化学溢出物等关键紧急情况下提供了基于影响的决策支持服务(IDSS),以及现场的现场。为了收集数据以进行预测和其他目的,NWS WFO员工监控,维护和使用自动化的地表观测站和多普勒天气雷达。除了WFO外,NWS还经营着全美的专业国家预测中心和区域总部,总共有168个运营单位。NWS劳动力的85%以上是在现场。对于当前的纽约天气,请访问www.weather.gov,并在国家地图上单击相关县或地区。
目的:超高速撞击月球表面抛出的粒子在地球和月球之间形成一个环面。根据我们前期的研究,大约有2.3×10-4kg/s的粒子经过长期的轨道演化后撞击地球。我们主要关注这些地球撞击体,分析它们的轨道元素分布,并估计它们对地球观测的影响。方法:前期工作模拟了月球表面抛出的粒子的长期轨道演化,得到了它们在地月系统中的稳态空间分布。本文分析了地球撞击体的模拟结果,包括不同初始参数的撞击体占所有撞击体的比例、轨道元素分布以及粒子在几个地球观测站上的投射。结果:在一定的初始参数范围内,月球表面抛出的粒子更有可能撞击地球。大多数从月球抛射出的撞击体(约 70%)会在一年内到达地球,而大多数较小粒子(87.2% 的 0.2 µm 粒子和 64.6% 的 0.5 µm 粒子)会在一周内到达地球。根据轨道分布的差异,很大一部分从月球抛射出的地球撞击体可与行星际尘埃粒子区分开来。此外,从不同的地球观测站的角度来看,从月球抛射出的粒子可能呈现出不同的结构和方向。
首字母缩略词和缩写 AI 人工智能 AMLD 高级移动泄漏检测 APEC 亚太经济合作组织 CARB 加州空气资源委员会 CEMS 连续排放监测系统 CH 4 甲烷 CO 一氧化碳 CO 2 二氧化碳 DOAS 差分光学吸收光谱仪 EPA 环境保护署(美国) FTIR 傅里叶变换红外光谱仪 GF-5 高分-5 GHG 温室气体 HFC 氢氟碳化物 HVAC 供暖、通风和空调 IOS 国际标准化组织 IoT 物联网 IPCC 政府间气候变化专门委员会 IRA 2022 年通胀削减法案(美国) LEO 低地球轨道 LDAR 泄漏检测和修复 LIDAR 光检测和测距 MoEF 环境和林业部(印度尼西亚) nd 无日期/未注明日期 N 2 O 一氧化二氮 NASA 美国国家航空航天局(美国) NDIR 非色散红外传感器 NIST 美国国家标准与技术研究所(美国) OCO 轨道碳观测站 PEMS 预测排放监测系统 PFC 全氟化碳 PPB 十亿分率 SF 6 六氟化硫 TCCON 总碳柱观测网络 THEOS 泰国地球观测系统 UAV 无人驾驶飞行器 UNFCCC 联合国气候变化框架公约 USAID 美国国际开发署
国家气象局 (NWS) 天气预报办公室 (WFO) 全年无休,24 小时不间断地为亚利桑那州居民提供天气、水文和气候预报和警告。全国共有 122 个 WFO,其中 3 个位于亚利桑那州。训练有素的预报员向公众、媒体、应急管理和执法官员、航空和航海界、农业利益相关方、企业等发布天气事件的警告和预报,包括强雷暴、龙卷风、飓风、冬季风暴、洪水和热浪。信息通过多种方式传播,包括无线应急警报、社交媒体、weather.gov 和 NOAA 气象广播全灾种。每个 WFO 都有一名预警协调气象学家,他们积极开展外联和教育计划,加强与应急管理、政府、媒体和学术界的当地合作伙伴的工作关系。在发生重大紧急情况(例如野火、洪水、化学品泄漏和重大恢复工作)时,预报员可通过远程和现场方式提供基于影响的决策支持服务 (IDSS)。为了收集用于预报和其他目的的数据,NWS WFO 工作人员会监控、维护和使用自动地面观测站和多普勒气象雷达。除了 WFO 之外,NWS 还在美国各地运营专门的国家预报中心和地区总部,共有 168 个运营单位。NWS 超过 85% 的员工都在现场工作。如需了解亚利桑那州的当前天气情况,请访问 www.weather.gov,然后在国家地图上单击相关县或地区。
摘要 - SAMM(太阳活动MOF监视器)是一种基于地面的机器人仪器,已开发用于研究和不断监测太阳的磁性,重点是活动区域(ARS)。这些区域的特征是复杂的磁性结构,可能导致爆炸性事件通常与空间环境中大量粒子和物质弹出有关。与地球磁层相互作用时,它们可以对我们的基础设施(卫星,导航系统)和地面(发电厂和电网)中的基础设施构成威胁。基于钠(Na)和钾(K)磁铁光学过滤器(MOFS),SAMM提供了“层析成像”的视图,以在太阳能的不同高度下提供高节奏磁力图和多普勒格拉姆的磁性结构,从而提供了一个独特的数据集高度,从而提供了一个独特的数据集,以推动当前的空间范围的天气范围内的范围较高的空间范围。能够预先预测这些事件(甚至几个小时)是制定缓解策略的基本任务,以减少对地球上重要基础设施的潜在灾难性影响。在这种情况下,SAMM天文台已经意识到可以在全球网络中复制的“节点”,目的是持续覆盖太阳状况。该项目最初是由意大利经济发展部(MISE)在2015年通过软贷款赠款资助的,其发展和运营是在INAF - 罗马与那不勒斯天文学观测站与意大利小型企业(SME)Avalon Instruments的科学合作中进行的。经过三年的发展,SAMM处于调试阶段。在本文中,我们提出了最终的仪器描述以及第一光图像。