视觉语言(VL)模型最近取得了未经证实的成功,其中连接模块是弥合模式差距的关键。尽管如此,在大多数存在方法中,富裕的视觉线索尚未充分利用。在视觉侧,大多数现有方法仅使用视觉塔的最后一个功能,而无需使用低级功能。在语言方面,大多数现有的方法仅引入浅视力互动。在本文中,我们提出了一个视觉启发的视觉语言连接模块,称为VIVL,该模块有效利用了VL模型的视觉提示。为了利用视觉塔中的较低级别信息,引入了特征金字塔提取器(FPE),以结合不同中间层的特征,该特征将视觉提示与可忽略不计的参数和计算在头顶上。为了实现VL相互作用,我们提出了深视觉条件的提示(DVCP),可以有效地进行视觉和语言特征的深层互动。我们的VIVL超过了以前的最新方法,当时是18.1苹果酒在从头开始训练可可字幕任务,这极大地提高了数据效率。当用作插件模块时,VIVL始终提高各种骨干和VL框架的性能,在多个基准测试中提供新的最新结果,例如Nocaps和VQAV2。
大型视觉模型的发展,无明显的剪辑,已经催化了对有效适应技术的研究,特别着眼于软及时调整。联合使用,使用单个图像的多个增强视图来增强零击的概括,它正在成为互动的重要领域。这主要指导研究工作,以进行测试时间及时调整。相比之下,我们为t estime a u Megentation(MTA)引入了强大的m eanshift,该方法超过了基于及时的方法而无需进行此类训练程序。这将MTA定位为独立和基于API的应用程序的理想解决方案。此外,我们的方法不依赖于某些先前测试时间augting技术中使用的临时规则(例如,置信度阈值)来过滤增强视图。相反,MTA将每种视图的质量评估变量直接纳入其优化过程,称为inllielness评分。该分数通过寻求过程进行了共同优化,从而导致有效的训练和无参数方法。我们在15个数据集上广泛地标记了我们的方法,并演示了MTA的优势和计算效率。在零摄像机模型和最先进的几种方法的顶部轻松部署为插件模块,MTA显示了系统的和一致的改进。
视觉语言(VL)模型已获得了显着的重点,从而在多模式推理方面取得了显着进步。这些体系结构通常包括视觉编码器,大型语言模型(LLM)和一个将视觉特征与LLM的代表空间保持一致的投影模块。尽管他们成功了,但仍然存在一个关键的限制:愿景编码过程仍然与用户查询相关,通常是以与图像相关的问题的形式。因此,所得的视觉特征可能无法最佳地调整图像的特定元素。为了解决这个问题,我们介绍了QA-Vit,这是一种问题的多模式原因,这是一种问题,将问题意识直接嵌入到视觉编码器中。此集成导致动态视觉特征,重点是提出问题的相关图像方面。QA-VIT是模型 - 静态的,并且可以有效地将其置于任何VL体系结构中。广泛的经验证明了将我们的方法应用于各种多模式体系结构的有效性,从而导致跨不同任务的一致改进,并展示了其以增强视觉和场景文本理解的能力。
图像包含大量冗余信息,使其具有挑战性地在大规模上从它们中有效地了解它们。最近的工作通过在视觉语言构想学习期间掩盖图像贴片来解决这个问题[15,33,36,70]。一种简单的方法是随机放下大部分斑块,通过降低每个训练迭代中的计算成本和记忆使用量,从而更有效地培训训练[36]。替代策略是掩盖语义相关的贴片[15,33,70],例如属于同一对象的贴片。这迫使学习的模型预测从上下文中描述缺少场景结构的单词,从而改善了学识渊博的表示。但是,这种方法需要一种单独的机制来将语义重新贴定的补丁分组在一起,这为学习过程增加了相当大的复杂性,并且计算上很昂贵。我们提出了一种简单的掩盖策略,用于避免这些缺点的多模式对比学习。在训练期间,我们掩盖了斑块的随机簇(图1)。对于此聚类,我们将Patches的原始RGB值用作特征表示。我们的方法利用了一个事实,即视觉相似性的简单度量通常可以限制相干的视觉结构,例如对象部分[18,53],
了解新兴的AI技术:探索如何利用前沿AI来获得竞争优势。为未来做准备:获得远见卓识,为AI的潜在发展制定战略,对于企业在动态世界中生存至关重要。立即获得可行的见解:确定您可以立即在业务中使用的切实策略和行动。向他人学习:发现其他雄心勃勃的积极环境影响如何使用数据和AI,衡量其影响并保持创新。
视觉 - 语言变压器(VLT)最近显示出巨大的成功,但同时伴随着大量的计算成本,其中主要原因可以归因于大量的视觉和语言令牌。存在用于压缩VLTS的令牌修剪研究主要遵循基于单模式的方案,但忽略了对齐不同模态来指导令牌修剪过程的关键作用,从而导致重要的代币在另一个模态分支中错误地修剪一个模态。同时,现有的VLT修剪作品也缺乏基于不同输入样本动态压缩每一层的灵活性。为此,我们提出了一个名为M Ultodal的新颖框架,用于加速变化VLT的木质制成d ynamic t ynamic t oken p Runing(MADTP)。具体来说,我们首先引入了精心设计的多模式对齐指导(MAG)模块,该模块可以使相同语义概念的特征与不同的模式相结合,以确保修剪的代币对所有模式都不太重要。我们进一步设计了一种新型的dy-namic令牌修剪(DTP)模块,该模块可以根据不同的输入实例自适应地调节每个层中的令牌压缩比。对各种基准测试的广泛实验表明,MADTP可以显着确定多种模型的计算复杂性,同时保留竞争性能。值得注意的是,当将MADTP应用于NLVR2数据集中的BLIP模型时,可以将GFLOPS降低80%,而性能降低少于4%。该代码可在https://github.com/double125/madtp上找到。
精确操作是指机器人在综合环境中表现出高度准确,细致和灵活的任务的能力[17],[18]。该领域的研究重点是高精度控制和对动态条件的适应性。使用运动学模型和动态模型以实现结构化设置中的精确定位和组装[19],依靠刚性机械设计和模型驱动的控制依赖于刚性机械设计和模型驱动的控制。最近,深度学习和强化学习改善了动态环境中的机器人适应性[20],[21],而视觉和触觉感应的进步使千分尺级的精度在握把,操纵和组装方面[22]。此外,多机器人协作还允许更复杂和协调的精确任务。尽管取得了重大进展,但在多尺度操作整合,动态干扰补偿和低延迟相互作用中仍然存在挑战[23]。未来的研究应进一步改善交叉模态信息的实时对齐,并增强非结构化环境中机器人视觉的鲁棒性,以优化精确的操纵能力。
。CC-BY 4.0 国际许可证永久有效。它是在预印本(未经同行评审认证)下提供的,作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权持有者于 2022 年 11 月 16 日发布了此版本。;https://doi.org/10.1101/2022.11.16.516784 doi:bioRxiv 预印本
一般信息您是向我们的办公室转介吗?是,如果是,我们可以感谢谁转介?_________________________ Phone: _____________ Address: __________________________________________________________________________ Child's Full Name: __________________________________________________ Male/ Female Birth Date: _________________________ Age: _____ years ______ months Name of School: __________________________________________ Grade: ________ Teacher: _______________________校长:________________________________您的孩子特别害怕医生吗?_________________________________________ Child's dominant hand (circle): right or left ?是否有使用手的指导?Yes No Father's Name: _________________________ Mother's Name:______________________________ Daytime Phone:__________________________ Evening Phone:_______________________________ Cell Number:_____________________________________ Email Address:____________________________________________________________