D-WAVE 在线资源:探索高管和开发人员的资源。视频、白皮书等。https://www.dwavesys.com/learn/resource-library
图 1 在经典计算机上使用不同的轨道基组初始化为不同自旋多重性的 LiH 和 TiH 双原子分子的预测 CCSD 键解离曲线。预测的 TiH 基态配置会根据所选的轨道基组而变化。基态配置用实心标记表示,而较高能量配置用空心标记表示。
在两个实际应用程序中,在两个方面(例如项目和用户,项目和市场)之间的匹配是必不可少的任务。双方图匹配已被研究为模拟这两个方面之间的这种匹配的基本问题[1]。通常应用了两分匹配的加权变体,以从相关的权重和在两部分图上定义的某些全局目标函数方面找到最佳的匹配。个体权重可以代表各种指标,例如价格,距离,时间和概率。匹配的现实世界应用包括儿童与学校之间的匹配[2,3],资源分配[4,5]和运输[6,7]。在另一类设置中,可以在某些概率语义上定义边缘的权重以表示直觉现象[8]。从与匹配有关的优化观点,尤其是在运输方面,使用模糊逻辑进行直觉现象的其他相关研究可以在库马尔[9,10]中找到。以前,已经研究了参与者(例如平台/服务提供商和个人用户)所需的几个全球属性,以进行双分部分匹配。一个例子是考虑与所陈述的偏好稳定匹配(例如,关于另一侧的项目的偏好)[11]。代表首选项的其他示例包括使用排名的元素列表来表示偏好和使用实用程序值来量化偏好(例如[12--14])。
德国政府的目标是到 2045 年实现气候中和,这要求对经济的各个领域进行系统性重组,特别是能源领域。目标是通过提高效率水平和将温室气体排放量几乎减少到零来减少德国的能源需求,同时始终保证供应安全。电力行业在其中发挥着核心作用。电气化程度的提高扩大了该行业的影响力,而可再生能源的扩张则减少了该行业的排放量。未来,电力行业还将间接向难以电气化的行业提供绿色能源和资源(例如,通过电转气过程及其下游产品)。目前,电力和天然气行业在许多方面相互独立。因此,氢气的使用将使它们比以前更加紧密地联系在一起。持续的节能措施以及可再生能源的高效利用和储存将成为转型的重要组成部分。为应对电网拥堵而削减波动性可再生能源是一个被广泛讨论的问题,该问题已从多个角度得到解决。氢气也可以在这个领域提供帮助(BMWK,2022 年;Art. 4 Abs. 4 欧洲委员会,2022 年;Netzentwicklungsplan Strom,2022 年)。提高电网的灵活性水平是一个可能的解决方案。在这里,电解器可以作为灵活的电力消费者提供灵活性。然而,电解器在电网中的集成和运行不仅必须从技术角度进行评估,还必须从经济角度进行评估。本讨论文件旨在强调和评估通过集成电解器提高灵活性所带来的机遇和挑战。本文的目的是促进对这一主题的进一步讨论,以就未来合适的框架达成共识。对于电解器运营商,它还确定了潜在的其他商业模式,使他们能够评估这些模式如何进一步发展。
大量具有重大社会、经济和科学意义的现实问题都可以表示为组合优化任务。组合优化方面的进步使得运输系统、供应链、资源管理等更加高效 [1、2、3、4、5]。在本文中,我们考虑经典的最大 2-可满足性(MAX-2-SAT)问题 [6],该问题在调度或资源分配任务中普遍存在,这只是其中的一些应用 [7]。假设给定一组 N 个二进制变量 x = (x1, x2, ..., xN) 和一组 C 个约束(或子句),每个子句有两个变量,它们形成布尔公式 F(x)。我们的目标是为每个变量 xi 分配一个二进制值,使得最大数量的子句得到满足。我们考虑的布尔公式 F(x) 采用合取范式,由子句的合取(逻辑与)组成,其中每个子句都是文字的析取(逻辑或)。例如,公式
氢气还可以提供清洁稳定的发电和峰值电力,这在能源系统中是有价值的功能,尤其是在我们向更多可再生能源过渡时。氢气在燃气发电厂(CCGT 或 OCGT)中的使用被认为是峰值电厂对可再生能源部署的补充。事实上,英国公司已经在制造峰值电厂,这些电厂可以在后期从使用天然气转换为使用氢气。一项美国研究使用最低能源成本法 (LCOE) 来研究解决季节性不平衡的成本,结果表明,使用氢燃料燃气轮机解决季节性能源不平衡的 LCOE 为每兆瓦时 (MWh) 2,400 美元,而使用锂离子电池系统则为 3,000 美元/MWh。如果燃气轮机使用“蓝色”氢气(即通过重整天然气产生的氢气)燃烧,平均 LCOE 将降至 1,560 美元/MWh(Hernandez & Gencer,2021 年)。英国需要进行这样的评估,以便让配电网络运营商认识到氢存储作为管理季节性不平衡方法的价值。
摘要:量子化学是噪声中型量子 (NISQ) 设备的一个有前途的应用。然而,量子计算机迄今为止尚未成功解决具有真正科学意义的问题,算法的进步对于充分利用当今可用的普通 NISQ 机器来说是必不可少的。我们讨论了一种基于将分子汉密尔顿量划分为两部分的基态能量估计方法:一部分是非上下文的,可以用经典方法求解,另一部分是上下文分量,可通过变分量子特征求解器 (VQE) 程序获得量子校正。这种方法被称为上下文子空间 VQE (CS-VQE);然而,在将其部署到 NISQ 设备上之前,还有一些障碍需要克服。我们在这里解决的问题是 ansatz,即我们在 VQE 期间对其进行优化的参数化量子态;最初并不清楚汉密尔顿量的分裂应如何反映在 CS-VQE ansa ̈ tze 中。我们提出了一种“非上下文投影”方法,该方法由稳定器形式中 CS-VQE 的重新表述所阐明。这定义了从完整电子结构问题到上下文子空间的假设限制,并促进了可在 NISQ 设备上部署的 CS-VQE 的实现。我们使用量子模拟器验证了非上下文投影假设,并展示了一组小分子的化学精确基态能量计算,同时显著减少了所需的量子比特数和电路深度。
媒体联系人:press@gtt.fr / +33(0)1 30 23 48 45投资者关系联系人:信息 - financiere@gtt.fr / + 33(0)1 30 23 20 87关于交叉方面的交叉方面是Shell Nederland和Eneco之间的合资企业。Crosswind赢得了风电场Hollandse Kust Noord的建设和运作的招标。Crosswind正在与西门子游戏可再生能源合作,以供应风力涡轮机,并与范奥德(Van Oord)一起提供地基和电缆的供应以及在海上的风力涡轮机的安装。Crosswind与离岸电源插座,电网开发人员Tennet以及相关部门,沿海当局和其他利益相关者的开发商密切联系。请访问网站www.crosswindhkn.nl,以获取有关Crosswind,Wind Farm,创新和建筑活动的更多信息。
– 将研发测量和目标与性能和经济影响联系起来 – 提供操作条件和周期以供考虑和测试 – 强调操作要求和可制造性 • 评估成本、性能和耐用性权衡,以确定最佳 LTE 部署,以实现可再生能源整合场景中 2 美元/千克和 1 美元/千克的生产成本 • 涉及多种功能的优化
