在充电/放电过程中锂电池电极的结构和电子演化的研究对于了解LI的存储/释放机制至关重要,并优化了这些材料,以实现高性能和循环性。在过去的20年中,在过去的20年中,已经开发出了几种原位和现代技术,例如X射线衍射XRD,1-11 X射线吸收光谱XAS XAS,12-15和Mössbauer,Mössbauer,16 Raman,ir和NMR 17,18 Specopies已开发出来。对电池材料的原位评估,即在封闭的电化学电池内观察,带来在线信息,并消除了通过环境气氛操纵高反应性粉末的风险。它允许研究复杂的反应机制,并证明由于电极s内的结构和电子过渡而导致的各种化学系统中的电压 - 组合物非常令人满意。可以在标准实验室衍射仪和同步加速器源设备中进行原位XRD研究,该设施可提供比常规X射线管所输送的光子量高几个数量级的X射线光束。到此为止,已经设计了几种用于转移或传输几何形状的电化学细胞。在标准X射线衍射仪中,高质量位置敏感探测器的最新开发使得在实验室中更容易使用此类技术。使用带状结构计算和数据模拟的最新方法在允许对电化学锂插入/提取过程中的化学键进行精确分析方面非常成功。在要研究的材料方面非常普遍,最近在伸展的X射线吸收膜结构Exafs和X射线吸收接近边缘结构Xanes Xanes Xanes模式中,最近在延伸的X射线吸收膜结构中广泛执行了原位XAS的结构变化和电子传递现象。例如,尽管信号的EXAFS部分提供了有关其自身吸收原子选择的近距离环境的直接结构信息,但可以将光谱的XANES部分大致看作是给定原子的空电子状态的图片,并允许在静脉内和反流中监测这些水平的收费过程。19此外,同步设施中弯曲的单晶的开发和使用分散X射线吸收结构以及单色QuickXAS快速旋转的可能性为研究的新方法铺平了道路,以研究对电池材料的研究。使用非常短的收购时间的可能性,通常是XRD和XAS几秒钟的顺序,确实允许我们投资 -
人类基因组学面临的一个主要挑战是破译序列与功能之间的特定关系。然而,现有的用于在原生基因组背景下进行位点特异性超突变和进化的工具有限。在这里,我们提出了一种用于长距离、位点特异性超突变的新型可编程平台,称为解旋酶辅助连续编辑 (HACE)。HACE 利用 CRISPR-Cas9 来靶向进行性解旋酶-脱氨酶融合,该融合会在较大的 (>1000 bp) 基因组间隔内引起突变。我们应用 HACE 来识别 MEK1 中导致激酶抑制剂抗性的突变,剖析 SF3B1 依赖性错误剪接中各个变体的影响,并评估 CD69 刺激依赖性免疫增强剂中的非编码变体。HACE 提供了一种强大的工具,可用于研究编码和非编码变体、揭示组合序列与功能的关系以及发展新的生物功能。
摘要:DCIA是祖先细菌复制性解旋酶加载剂,在进化过程中,噬菌体起源的DNAC/I负载器在进化过程中替换。DNAC通过打开六聚体环,帮助解旋酶在DNA上加载,但是DCIA负载的机理仍然未知。我们通过电子显微镜,核磁共振(NMR)光谱和生物化学实验证明,折叠成KH样结构域的DCIA不仅在非典型模式下与单链,而且是双链DNA相互作用。长α-helix 1的某个点突变表明了其在DCIA相互作用中对于模仿单链,双链和分叉DNA的各种DNA底物的相互作用的重要性。其中一些突变也影响了DCIA对解旋酶的负载。我们提出了一个假设,即DCIA可以通过在两个DNA链之间进行插入以稳定它来成为DNA伴侣。这项工作使我们能够提出DCIA与DNA的直接相互作用可以在解旋酶的负载机理中发挥作用。
。CC-BY 4.0 国际许可证永久有效。它以预印本形式提供(未经同行评审认证),作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权所有者于 2025 年 2 月 3 日发布了此版本。;https://doi.org/10.1101/2024.11.13.623343 doi:bioRxiv 预印本
1 Edelris, Bioparc, Bioserra 1 Building, 69008 Lyon, France 2 大学格勒诺布尔阿尔卑斯国家科学研究院,DCM,38000 格勒诺布尔,法国 3 谢菲尔德大学医学与人口健康学院临床医学部,Beech Hill Rd.,谢菲尔德 S10 2RX,英国 4 慕尼黑路德维希马克西米利安大学 (LMU) 和德国癌症联盟 (DKTK) 皮肤病学和过敏学系,慕尼黑合作伙伴中心,Frauenlobstrasse 9-11,D-80337 慕尼黑,德国 5 杜伊斯堡-埃森大学西德癌症中心医学院皮肤病学系皮肤癌科,Hufelandstraße 55,D-45147 埃森,德国 6 Diamond Light Source Ltd.,哈威尔科学与创新园区,哈威尔研究综合体,哈威尔校区,迪德科特,英国 7 约克大学化学系约克结构生物学实验室,约克 YO10 5DD,英国 8 药品卡迪夫大学探索研究所,主楼,公园广场,卡迪夫 CF10 3AT,英国
Bioacademia Co.,Ltd。电话。06-6877-2335传真06-6877-2336 info@bioacademia.co.jp https://www.bioacademia.jp/
hatzimanolis,精神分裂症患者衍生的嗅觉神经元干细胞中的橡木失调的循环RNA是与细胞迁移和亚细胞组织相关的疾病相关性状的基础
新型的冠状病毒19(Covid-19)在全球造成了毁灭性影响,医护人员是受大流行影响最大的人之一。尽管医护人员在全球和加纳的COVID-19疫苗接种中优先考虑,但犹豫接受疫苗的犹豫导致对大流行的控制延迟。在加纳,医疗保健工作者在疫苗推广前接受了39.3%的疫苗接种。因此,这项研究评估了加纳后疫苗发生期间,加纳的卫生保健工人中共同疫苗接种和相关因素的吸收。这是一项分析性横断面研究,该研究使用半结构化问卷收集有关COVID-19的数据疫苗接种摄取和影响因素的数据。256名医护人员使用分层的随机抽样方法在加纳的Ayawaso West市选择。描述性统计数据用于检查社会人口统计学因素和李克特量表响应。双变量和多变量的逻辑回归,以识别疫苗摄取的预分量,并在p <0.05时宣布统计显着性。超过四分之三的参与者220(85.9%)至少接受了COVID-19疫苗接种的至少一剂,而36(14.9%)犹豫不决。超过一半139(54.3%)对Covid-19疫苗接种有足够的知识,而大多数(73.4%)对其有效性具有积极的看法。218(85.2%)的HCW对COVID-19疫苗接种具有积极的态度。加纳HCW之间的共同销量是有希望的。对Covid-19-19疫苗接种的积极态度(AOR = 4.3; 95%CI:1.4,13.0)和高线索(AOR = 5.7; 95%CI:2.2,14.8)是预测医务人员中COVID-19的疫苗接种的因素。但是,在很大一部分HCWS中接受疫苗接种的犹豫引起了人们的关注。为了确保所有卫生保健工作者的疫苗接种,促进疫苗接种的干预措施应针对疫苗接种的关键决定因素,例如对疫苗接种的态度和行动提示。
冠状病毒含有RNA病毒中最大的基因组之一,编码与蛋白水解加工,基因组复制和转录有关的14-16个非结构性蛋白质(NSP),以及四种构建成熟Virion的核心的结构蛋白。由于跨冠状病毒的保护,NSP形成了一组有前途的药物靶标,因为它们的抑制作用直接影响病毒复制,因此会影响感染的进展。显示出一种由一种RNA依赖性RNA聚合酶(NSP12),一个NSP7,两个NSP8辅助亚基和两个解旋酶(NSP13)酶形成的最小但功能齐全的复制和转录复合物。我们的方法涉及NSP12和NSP13,以使多个起点干扰病毒感染的进展。在这里,我们报告了一种合并的体外重新利用筛选方法,确定了新的和确认报告的SARS-COV-2 NSP12和NSP13抑制剂。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2023年10月8日。 https://doi.org/10.1101/2023.10.06.561296 doi:Biorxiv Preprint