图 1:使用国际 10-20 系统从 (a) 矢状面和 (b) 轴平面 (c) 头皮角度看到的 64 个电极配置表示。注意:A= 耳垂,C = 中央,Pg = 鼻咽,P = 顶叶,F = 额叶,Fp = 额极和 O = 枕叶。
摘要 — 目标:当存在多个声源时,当前助听器中的降噪算法缺乏有关用户关注的声源的信息。为了解决这个问题,它们可以与听觉注意解码 (AAD) 算法相辅相成,该算法使用脑电图 (EEG) 传感器解码注意力。最先进的 AAD 算法采用刺激重建方法,其中关注源的包络从 EEG 重建并与各个源的包络相关。然而,这种方法在短信号段上表现不佳,而较长的片段在用户切换注意力时会产生不切实际的长检测延迟。方法:我们提出使用滤波器组公共空间模式滤波器 (FB-CSP) 解码注意力的方向焦点作为替代 AAD 范式,它不需要访问干净的源包络。结果:提出的 FB-CSP 方法在短信号段上的表现优于刺激重建方法,在相同任务上的表现也优于卷积神经网络方法。我们实现了高精度(1 秒窗口为 80%,准瞬时决策为 70%),足以实现低于 4 秒的最小预期切换持续时间。我们还证明解码器可以适应来自未见对象的未标记数据,并且仅使用位于耳朵周围的部分 EEG 通道来模拟可穿戴 EEG 设置。结论:提出的 FB-CSP 方法可以快速准确地解码听觉注意力的方向焦点。意义:在非常短的数据段上实现高精度是朝着实用的神经引导听力设备迈出的重要一步。
结直肠癌(CRC)以其高转移潜力而闻名,仍然是癌症相关死亡的主要原因。本综述强调了免疫反应在CRC转移中的关键作用,重点是免疫细胞与肿瘤微环境之间的相互作用。我们探索免疫细胞如何通过细胞因子,趋化因子和生长因子有助于CRC转移级联反应,从而强调了肿瘤微环境在塑造免疫反应中的作用。该评论涉及CRC的免疫逃避策略,尤其是对PD-1和CTLA-4等检查点抑制剂的上调,突显了它们作为治疗靶标的潜力。我们还检查了先进的免疫疗法,包括检查点抑制剂和免疫细胞移植,以改变免疫反应并增强CRC转移的治疗结果。总体而言,我们的分析提供了对免疫分子与肿瘤环境之间相互作用的见解,对于开发新的治疗方法以控制CRC转移并改善患者预后至关重要,并特别着重于克服免疫逃避,这是该特殊问题的关键方面。
本文档的创建是为了指导教师支持3 - 12年级的学生,并了解多音节单词的含义。本指南中的信息和教学活动是根据研究创建的,并证明了有关音节和形态学意识在阅读中的作用的最佳实践。本指南首先向教师提供上下文和内容知识,以开始他们将要开始的工作。然后,包括指导活动供教师实施,并嵌入视频以帮助教师实施。最后,在执行多音节工作时,在末尾提供了音节类型的锚图和音节划分。这些活动中的许多活动都可以用作小组干预活动,而整个班级也可以使用一些活动来增强学生在高级成绩中进步并遇到更复杂的单词时的解码技能。
大脑解码技术为解释神经活动的解释以重现思想,情感和运动的方式铺平了道路。Tang等。 (2023)引入了一种新颖的方法,该方法将语言模型用作基于功能磁共振成像(fMRI)数据的大脑解码的生成模型。 在他们的工作中构建,这项研究探讨了使用三种其他语言模型的使用以及先前研究中使用的GPT模型,以改善解码功能。 此外,我们使用嵌入模型添加了一个评估度量,提供了比BertScore更高水平的语义相似性。 通过比较解码的表现并确定导致良好性能的因素,我们发现高解码精度并不仅仅取决于准确预测大脑活动的能力。 相反,该模型倾向于生成更精确的句子重新构造的文本类型(例如Web文本,博客,新闻文章和书籍),它倾向于生成更重要的作用。Tang等。(2023)引入了一种新颖的方法,该方法将语言模型用作基于功能磁共振成像(fMRI)数据的大脑解码的生成模型。在他们的工作中构建,这项研究探讨了使用三种其他语言模型的使用以及先前研究中使用的GPT模型,以改善解码功能。此外,我们使用嵌入模型添加了一个评估度量,提供了比BertScore更高水平的语义相似性。通过比较解码的表现并确定导致良好性能的因素,我们发现高解码精度并不仅仅取决于准确预测大脑活动的能力。相反,该模型倾向于生成更精确的句子重新构造的文本类型(例如Web文本,博客,新闻文章和书籍),它倾向于生成更重要的作用。
d∈Rlc×1,收集所有时间滞后和通道的所有解码器系数,以及x(t)= h x 1(t)t x 2(t)t x 2(t)t·x c(t)t c(t)
脑解码是神经科学的一个关键领域,旨在从获取的脑信号中重建刺激,主要利用功能性磁共振成像(fMRI)。目前,脑解码局限于每个受试者每个模型的范式,这限制了它对为其训练解码模型的同一个体的适用性。这种限制源于三个关键挑战:1)由于大脑大小的差异,不同受试者的输入维度存在固有的差异性;2)独特的内在神经模式,影响不同个体感知和处理感官信息的方式;3)现实世界场景中新受试者的数据可用性有限,阻碍了解码模型的性能。在本文中,我们提出了一种新方法 MindBridge,它仅使用一个模型即可实现跨受试者的脑解码。我们提出的框架建立了一个通用范式,能够通过引入生物启发的聚合函数和新颖的循环 fMRI 重建机制来应对主题不变的表征学习。值得注意的是,通过循环重新
图 6 示例性注意力矩阵,可视化三位参与者在收敛时的注意力得分(来自随机选择的训练样本)(值越亮表示注意力得分越高)。解码器中的时间步长在 y 轴上表示,编码器的时间步长在 x 轴上表示。对角线结构表明注意力得分在时间域上是很好地对齐的,例如输出中的后续步骤关注输入中的后续步骤。该图还表明,填充输入 sEEG 序列(语音规划和理解)可能是不必要的,因为没有太多注意力放在第一个和最后一个输入步骤上。
直到最近,研究人员主要对阅读中的人类行为数据感兴趣,以了解人类认知。然而,这些人类语言处理信号也可以用于基于机器学习的自然语言处理任务。目前,将脑电图大脑活动用于此目的的研究还很大程度上尚未得到探索。在本文中,我们首次进行了大规模研究,系统地分析了脑电图大脑活动数据在改进自然语言处理任务方面的潜力,特别关注了信号的哪些特征最有益。我们提出了一种多模态机器学习架构,它可以从文本输入和脑电图特征中联合学习。我们发现将脑电图信号过滤到频带中比使用宽带信号更有益。此外,对于一系列词嵌入类型,脑电图数据可以改进二元和三元情绪分类,并且优于多个基线。对于关系检测等更复杂的任务,在我们的实验中,只有情境化的 BERT 嵌入优于基线,这提出了进一步研究的需要。最后,当训练数据有限时,EEG 数据显示出特别有前景。
在实验的第一个版本中,参与者默默地阅读屏幕上的单词(一次),然后是视觉固定 - 交叉提示,以重复他们的脑海中。在某些试验中,接下来是提示他们想象的是五个(生成性内部语音任务)不同的单词。所有视觉刺激均出现0.8-1.0秒,然后是持续0.8-1.0秒的空白屏幕。我们收集了来自3名男性参与者的MEG(Elekta Neuromag 306-渠道)和EEG(EasterCap 64通道)数据,每个参与者分别为6、2和2个会话。由此产生的会话包括大约325个读数,325个重复的内部语音和250个生成性的语音试验,几乎平均分配在5个单词之间(单词选择是随机的)。在实验的第二版中,显示了四个连续的十字架,而是以1秒的间隔显示了连续的十字架,以便参与者重复4次单词。,我们从男性参与者那里收集了1次,从另一名男性参与者那里收集了1次MEG和脑电图数据,其中1个MEG和1个单独的EEG会话,以及第三名男性参与者的1个MEG和10个MEG和10个单独的EEG会话。这些课程中的每一个都包含大约173次阅读,692个重复的内部语音和640个生成性内部语音试验。
