1加州大学欧文分校生物医学工程系,CA 92617,美国2,2复杂生物体系中心,加利福尼亚大学,欧文分校,CA 92697,美国,3,CHAO合成生物学中心,Chao家族综合综合癌症中心发育和细胞生物学系,加利福尼亚州,美国4.26体质de l'ecole normale sup´erieure,ENS,Universit´e PSL,CNRS,Sorbonne Universit´e,Universit´e Paris cit´e,巴黎,法国,法国,5 Kusuma生物科学学院,印度技术学院,印度技术研究所,德里,德里,110016,印度110016,印度,6个小型Biosystems,facelent de deaada de de la d de la de de de de de de de de la sica de la sica, F´ısica,巴塞罗那大学,Carrer de Mart'i franqu`ies,1,08028西班牙巴塞罗那,7纳米西亚Institut de Nanotecnologia I nanotecnologia(IN2UB),巴塞罗那大学,佩尔纳尼亚州98028 pa Barcelona,98028 pa niia pa pan pa niia pa niia pa niia pa Institut de Biologie de l'´ Ecole Normale sup´erire(Ibens),CNRS,Insers,´Ecole Normale Sup´erieure,PSL研究生,F-75005,F-75005,法国,法国,10化学和生物化学系,加利福尼亚Los Angelles,Los Angelles,Los Angelles,Ca 90095法国1加州大学欧文分校生物医学工程系,CA 92617,美国2,2复杂生物体系中心,加利福尼亚大学,欧文分校,CA 92697,美国,3,CHAO合成生物学中心,Chao家族综合综合癌症中心发育和细胞生物学系,加利福尼亚州,美国4.26体质de l'ecole normale sup´erieure,ENS,Universit´e PSL,CNRS,Sorbonne Universit´e,Universit´e Paris cit´e,巴黎,法国,法国,5 Kusuma生物科学学院,印度技术学院,印度技术研究所,德里,德里,110016,印度110016,印度,6个小型Biosystems,facelent de deaada de de la d de la de de de de de de de de la sica de la sica, F´ısica,巴塞罗那大学,Carrer de Mart'i franqu`ies,1,08028西班牙巴塞罗那,7纳米西亚Institut de Nanotecnologia I nanotecnologia(IN2UB),巴塞罗那大学,佩尔纳尼亚州98028 pa Barcelona,98028 pa niia pa pan pa niia pa niia pa niia pa Institut de Biologie de l'´ Ecole Normale sup´erire(Ibens),CNRS,Insers,´Ecole Normale Sup´erieure,PSL研究生,F-75005,F-75005,法国,法国,10化学和生物化学系,加利福尼亚Los Angelles,Los Angelles,Los Angelles,Ca 90095法国
在 3.5 至 8.5 eV 的能量下观察到,并且形成截面低两到三个数量级。未记录长寿命分子离子。在 DFT CAM B3LYP/6-311 + G(d,p)近似中的计算预测存在六种稳定的阴离子结构,其中氯阴离子通过非共价 H − Cl − − H 键与中性残基配位。这些结构中最稳定的电子亲和力与实验测量值 EA a = 0.2771±0.003 eV 相一致。这些结果与先前获得的关于溴取代联苯、萘和蒽分子的 DEA 数据一致,并证实了具有非共价 H − Hal − H 键的阴离子结构的存在。这种非共价阴离子结构应该极具反应性,这使得它们有望用于合成自组装碳氢化合物纳米膜。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该预印本版本的版权持有人,该版本发布于2025年2月13日。 https://doi.org/10.1101/2025.02.12.12.637922 doi:Biorxiv Preprint
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该预印本版本的版权持有人,该版本发布于2025年2月13日。 https://doi.org/10.1101/2025.02.12.12.637922 doi:Biorxiv Preprint
摘要:对于细胞周期蛋白依赖性激酶12和13(CDK12和CDK13)的有效抑制剂的合理设计和开发在很大程度上取决于对动态抑制构象的理解,但很难通过常规特征工具来实现。在此,我们整合了赖氨酸反应性分析(LRP)和天然MS(NMS)的结构质谱法(MS)方法,以系统地询问动态分子相互作用和CDK12/CDK13-CYCLIN K(cyck)的整体蛋白质组装,而小型分解物的调节构成。基本结构见解,包括抑制剂结合袋,结合强度,界面分子细节和动态构象变化,可以从LRP和NMS的互补结果中得出。我们发现抑制剂SR-4835结合可以极大地破坏CDK12/CDK13-CYCK相互作用,以异常的变构激活方式,从而为激酶活性抑制提供了一种新颖的替代方法。我们的结果强调了LRP与NMS的巨大潜力,用于评估和合理设计分子水平的有效激酶抑制剂。
除了实验测量外,量子力学(QM)计算在评估和预测BDE值方面已经成为关键。新兴的计算方法用于自动枚举和探索反应机制的枚举和探索使用估计的BDE值,以识别众多可能性之间的能量有利路径。在0 K(d 0)的BDES综合计算中,可以实现10个高水平的精度。例如,CBS-QB3方法的平均误差(MAE)为0.58 kcal mol-l相对于小分子(例如硅藻,碳氢化合物和N,S,S,BE,LI和SI)的实验值的平均误差(MAE)。11,12然而,密度功能理论(DFT)计算对于较大的,构象上的thy-facible化合物而言更为实用,并且越来越多地用于计算BDES:13 M06-2X混合Meta-GGA函数可提供2.1 kcal mol - 1
摘要:自由基定向解离 (RDD) 是一种碎裂技术,其中通过选择性 213/266 nm 光解离碳 − 碘键产生的自由基被重新分离并碰撞活化。在之前的 RDD 实验中,碰撞活化是由离子阱碰撞诱导解离 (CID) 实现的。高能碰撞解离 (HCD) 与 CID 的不同之处在于离子的激发方式以及观察到的碎片的数量、类型或丰度。在本文中,我们探讨了 HCD 在 RDD 实验中的活化用途。尽管无论采用何种活化能,RDD-CID 都有利于由自由基定向途径(例如 a/z 离子和侧链损失)产生的碎片,但 RDD-HCD 光谱随活化能的变化而变化很大,较低的能量有利于 RDD,而较高的能量有利于由移动质子(b/y 离子)引导的裂解产生的产物。因此,RDD-HCD 可以根据提供的 HCD 能量提供更可调的碎片。重要的是,随着 HCD 能量的增加,自由基产物的丰度会降低,这证实了 RDD 通常通过较低能量屏障进行,而不是通过移动质子驱动的解离。因此,对于 RDD-HCD,b/y 离子在较高能量下占主导地位可以通过在初始或后续解离事件后不含自由基的碎片的更高存活率来解释。此外,这些结果证实了先前的猜测,即由于多次解离事件,HCD 光谱与 CID 光谱不同。关键词:碎片化、光解离、自由基定向解离、高能碰撞解离、碰撞诱导解离■ 简介
摘要:自由基导向解离(RDD)是一种脆弱的技术,其中通过选择性的213/266 nm光解离的碳 - 碘键被重新分离并碰撞激活。在先前的RDD实验中,通过离子陷阱碰撞诱导的解离(CID)实现碰撞激活。高能碰撞解离(HCD)与CID在离子的激发方式以及观察到的片段的数量,类型或丰度方面都不同。在本文中,我们探讨了HCD在RDD实验中激活的使用。虽然RDD-CID有利于从根本导向的途径(例如A/Z-ION和侧链损耗)产生的碎片,而不管使用的激活能量如何,RDD-HCD光谱差异很大,而较低的能量有利于RDD,而较高的能量则偏向于由移动蛋白(b/y-y)引起的较高能量的产品,而较高的能量有利于RDD,而较高的能量则偏爱。RDD-HCD基于所提供的HCD能提供了更可调的碎片化。重要的是,激进产物的丰度随着HCD能量的增加而降低,证实RDD通常相对于移动 - 普罗顿驱动的解离而通过较低的能源屏障进行。因此,可以通过在初始或随后的解离事件后不包含自由基的片段的较高生存能力来解释b/y型在较高能量的b/y敌人的优势。此外,这些结果证实了先前怀疑HCD光谱与由于多个解离事件引起的CID光谱不同。关键字:碎片,光解离,自由基导向解离,更高能量的碰撞解离,碰撞引起的解离■简介
蛋白质吸附到固体碳水化合物界面对许多生物过程至关重要,特别是在生物质分解中。为了设计更有效的酶将生物质分解成糖,必须表征复杂的蛋白质-碳水化合物界面相互作用。碳水化合物结合模块 (CBM) 通常与微生物表面束缚的纤维素小体或分泌的纤维素酶相关,以增强底物的可及性。然而,由于缺乏机制理解和研究 CBM-底物相互作用的合适工具包,人们并不十分了解 CBM 如何识别、结合和与多糖分离以促进有效的纤维素分解活性。我们的工作概述了一种使用高度多路复用的单分子力谱分析研究 CBM 从多糖表面解离行为的通用方法。在这里,我们应用声学力谱 (AFS) 来探测热纤梭菌纤维素体支架蛋白 (CBM3a),并测量其在生理相关的低力加载速率下从纳米纤维素表面的解离。展示了一种自动微流体装置和方法,用于将不溶性多糖均匀沉积在 AFS 芯片表面。野生型 CBM3a 及其 Y67A 突变体从纳米纤维素表面解离的断裂力表明不同的多峰 CBM 结合构象,并使用分子动力学模拟进一步探索结构机制。应用经典动态力谱理论,推断出零力下的单分子解离率,发现其与使用带有耗散监测的石英晶体微天平独立估算的本体平衡解离率一致。然而,我们的研究结果也强调了应用经典理论来解释纤维素 - CBM 键断裂力超过 15 pN 的高度多价结合相互作用的关键局限性。