版权所有©2024由Stemcell Technologies Inc.保留的所有权利,包括图形和图像。Stemcell Technologies&Design,Stemcell Shield设计,科学家,帮助科学家,Intecult和STEMDIFF是加拿大Stemcell Technologies Inc. E8,MTESR和TESR的商标。康宁和Matrigel是Corning Incorporated的注册商标。所有其他商标都将其各自持有人的财产。尽管Stemcell已做出了所有合理的努力,以确保Stemcell及其供应商提供的信息是正确的,但对此类信息的准确性或完整性,没有任何保证。
除了实验测量外,量子力学(QM)计算在评估和预测BDE值方面已经成为关键。新兴的计算方法用于自动枚举和探索反应机制的枚举和探索使用估计的BDE值,以识别众多可能性之间的能量有利路径。在0 K(d 0)的BDES综合计算中,可以实现10个高水平的精度。例如,CBS-QB3方法的平均误差(MAE)为0.58 kcal mol-l相对于小分子(例如硅藻,碳氢化合物和N,S,S,BE,LI和SI)的实验值的平均误差(MAE)。11,12然而,密度功能理论(DFT)计算对于较大的,构象上的thy-facible化合物而言更为实用,并且越来越多地用于计算BDES:13 M06-2X混合Meta-GGA函数可提供2.1 kcal mol - 1
摘要:对于细胞周期蛋白依赖性激酶12和13(CDK12和CDK13)的有效抑制剂的合理设计和开发在很大程度上取决于对动态抑制构象的理解,但很难通过常规特征工具来实现。在此,我们整合了赖氨酸反应性分析(LRP)和天然MS(NMS)的结构质谱法(MS)方法,以系统地询问动态分子相互作用和CDK12/CDK13-CYCLIN K(cyck)的整体蛋白质组装,而小型分解物的调节构成。基本结构见解,包括抑制剂结合袋,结合强度,界面分子细节和动态构象变化,可以从LRP和NMS的互补结果中得出。我们发现抑制剂SR-4835结合可以极大地破坏CDK12/CDK13-CYCK相互作用,以异常的变构激活方式,从而为激酶活性抑制提供了一种新颖的替代方法。我们的结果强调了LRP与NMS的巨大潜力,用于评估和合理设计分子水平的有效激酶抑制剂。
摘要 盛宴-饥荒反应蛋白是原核生物中一类广泛保守的全局调节蛋白,其中研究最多的是大肠杆菌亮氨酸反应调节蛋白 (Lrp)。Lrp 能够感知环境营养状况,并随后直接或间接地调节大肠杆菌中多达三分之一的基因。Lrp 主要以八聚体和十六聚体 (16 聚体) 的形式存在,其中亮氨酸被认为会使平衡向八聚体状态移动。在本研究中,我们分析了三种寡聚状态的 Lrp 突变体在其与 DNA 结合和调节外源亮氨酸引起的基因表达的能力方面的影响。我们发现二聚体以上的寡聚化是 Lrp 的调节活性所必需的,并且与之前的推测相反,外源亮氨酸仅通过抑制 Lrp 与 DNA 结合来调节其靶启动子处的 Lrp 活性。我们还证明了 Lrp 结合可以在数千碱基的长度范围内连接 DNA,揭示了 Lrp 介导的转录调控的一系列新机制。
持续投资于 MS/MS 技术开发对于提供工具和工作流程至关重要,这些工具和工作流程可以表征越来越全面的化合物类别、分子结构和样品类型。因此,EAD 已被证明是一个改变游戏规则的技术,可以改变 MS/MS 实验并能够获取必要的碎片数据。本白皮书概述了当前 MS/MS 方法所面临的挑战以及使用新的可调 EAD 碎片可以实现的显著优势。示例展示了 EAD 在小分子和代谢物的结构解析、异构化合物的区分和定量、蛋白质修饰的识别和定位以及脂质的完整表征方面的强大功能。
图 1 在经典计算机上使用不同的轨道基组初始化为不同自旋多重性的 LiH 和 TiH 双原子分子的预测 CCSD 键解离曲线。预测的 TiH 基态配置会根据所选的轨道基组而变化。基态配置用实心标记表示,而较高能量配置用空心标记表示。
在 3.5 至 8.5 eV 的能量下观察到,并且形成截面低两到三个数量级。未记录长寿命分子离子。在 DFT CAM B3LYP/6-311 + G(d,p)近似中的计算预测存在六种稳定的阴离子结构,其中氯阴离子通过非共价 H − Cl − − H 键与中性残基配位。这些结构中最稳定的电子亲和力与实验测量值 EA a = 0.2771±0.003 eV 相一致。这些结果与先前获得的关于溴取代联苯、萘和蒽分子的 DEA 数据一致,并证实了具有非共价 H − Hal − H 键的阴离子结构的存在。这种非共价阴离子结构应该极具反应性,这使得它们有望用于合成自组装碳氢化合物纳米膜。
组织解离是单细胞样品制备中的关键步骤,可以通过固有的细胞应力反应改变样品的转录状态。在这里,我们演示了一种在样品制备过程中测量转录响应的一般方法。在我们的方法中,分离过程中制作的转录本在测序后以后进行标记。我们在斑马鱼幼虫中发现了一般以及细胞类型的特异性解离反应程序,尽管实验条件很好,但我们观察到小鼠心肌细胞的分离反应中样品对样本的变化。最后,我们表明小鼠海马的解离可以导致小胶质细胞的人工激活。总而言之,我们的方法促进了解离程序的实验性选择以及转录扰动响应的计算去除。
我们使用半经典方法研究了通过分子阳离子对电子的激光辅助解离重组的过程。在反应球以外的区域中,对组合激光和库仑领域中的电子运动经过经典处理。在球体内忽略了激光效果,重组概率是从针对无激光过程计算的量子机械横截面获得的。在强度2.09 GW / cm 2和波长22的场中,进行了特定的计算,以进行H + 2的分离重组。8μm。在1 meV高于1 MEV的能量区域中,由于库仑聚焦效果,横截面显着增强。 还研究了由于电子捕获到Rydberg状态而引起的间接过程的影响。 尽管由于领域的影响,rydberg共振被洗净,但它们的影响显着,显着地影响了分离性重组横截面的大小。8μm。在1 meV高于1 MEV的能量区域中,由于库仑聚焦效果,横截面显着增强。还研究了由于电子捕获到Rydberg状态而引起的间接过程的影响。尽管由于领域的影响,rydberg共振被洗净,但它们的影响显着,显着地影响了分离性重组横截面的大小。
蛋白质吸附到固体碳水化合物界面对许多生物过程至关重要,特别是在生物质分解中。为了设计更有效的酶将生物质分解成糖,必须表征复杂的蛋白质-碳水化合物界面相互作用。碳水化合物结合模块 (CBM) 通常与微生物表面束缚的纤维素小体或分泌的纤维素酶相关,以增强底物的可及性。然而,由于缺乏机制理解和研究 CBM-底物相互作用的合适工具包,人们并不十分了解 CBM 如何识别、结合和与多糖分离以促进有效的纤维素分解活性。我们的工作概述了一种使用高度多路复用的单分子力谱分析研究 CBM 从多糖表面解离行为的通用方法。在这里,我们应用声学力谱 (AFS) 来探测热纤梭菌纤维素体支架蛋白 (CBM3a),并测量其在生理相关的低力加载速率下从纳米纤维素表面的解离。展示了一种自动微流体装置和方法,用于将不溶性多糖均匀沉积在 AFS 芯片表面。野生型 CBM3a 及其 Y67A 突变体从纳米纤维素表面解离的断裂力表明不同的多峰 CBM 结合构象,并使用分子动力学模拟进一步探索结构机制。应用经典动态力谱理论,推断出零力下的单分子解离率,发现其与使用带有耗散监测的石英晶体微天平独立估算的本体平衡解离率一致。然而,我们的研究结果也强调了应用经典理论来解释纤维素 - CBM 键断裂力超过 15 pN 的高度多价结合相互作用的关键局限性。